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Abstract

The main theme of this thesis is the theory of Euler and Kolyvagin systems. Such
systems are norm compatible classes in the Galois cohomology of p-adic represen-
tations. We focus on two aspects of this theory: how to prove these norm compati-
bilities in the case of the Asai representation attached to a quadratic Hilbert modular
form on one hand and how to use norm compatible classes to bound Selmer groups
in the case of elliptic curves with a rational p-isogeny on the other.

More precisely, in the first part of this thesis we study certain classes in motivic
cohomology of Hilbert modular surfaces, first constructed by Lei—Loeffler—Zerbes.
We prove norm relations for the Euler system built from these classes for the Asai
representation attached to a Hilbert modular form over a quadratic real field F. Un-
der a strong condition on the underlying real quadratic field, we give a proof of
the norm relations for primes that split in F, using the technique introduced by the
authors. We then redefine the classes in the language used by Loeffler—Skinner—
Zerbes in the GSp(4) case and prove norm relations using local representation the-
ory. With this technique we are able to remove the above mentioned assumption
and prove tame norm relations for all inert and split primes.

In the second part, we present part of a joint work with F. Castella, J. Lee
and C. Skinner in which we use the Heegner point Kolyvagin system to prove a
bound on the Selmer group attached to a rational elliptic curve with a rational p-
isogeny, extending a result by Howard. This result is crucial in the proof of the
anticyclotomic Iwasawa main conjecture, which is used in the above mentioned

work to prove new cases of the p-part of the Birch and Swinnerton-Dyer conjecture.
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Chapter 1

Introduction

One of the most challenging open problems in Number Theory is the conjecture
of Birch and Swinnerton-Dyer for elliptic curves and its generalisation to motives,
as given by Bloch and Kato [BK90] and later refined by Fontaine and Perrin-Riou
[FPR94]. Roughly speaking, in order to study a motive M (for example the one
attached to an elliptic curve E over QQ), one can look at two objects of very dif-
ferent nature: an L-function, which is an analytic object “collecting local data at
all primes”, and an algebraic object encoding “global aspects” of the motive, for
example the set of all rational points of E or, more generally, a Selmer group. The
Birch and Swinnerton-Dyer and the Bloch-Kato conjectures predict that there is a
surprisingly strict relation between these apparently different sides. The simplest
form of the conjecture can be stated as follows: the L-function L(M,s) attached to
the motive M is a priori defined on some half plane, but it is expected to have an-
alytic continuation for all s € C. Denote by X (M) the algebraic object attached to
M; under some assumptions, these conjectures relate X (M) and the value at some

integer s of the L-function L(M, s). In particular they predict
L(M,sop) # 0= X(M) is finite, (rank 0)

ordy—s, L(M,s) > 1 = X (M) is infinite. (rank > 1)

The theory of Euler and Kolyvagin systems is a powerful tool that can be used

to attack these conjectures. In this thesis we present some results in two different
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settings: in Chapter 3 and 4 the motive' considered is attached to a quadratic Hilbert
modular form, in Chapter 5 it is the one given by elliptic curves over Q. The results
we present are motivated by their application in proving the statement (rank 0) in

the former case and a refinement of (rank > 1) in rank one in the latter case.

1.1 What is an Euler system?

The notion of Euler system has been developed in the last 30 years, starting with
the work of Thaine [Tha88], where he introduced a remarkable new method for
studying ideal class groups of real abelian number fields using cyclotomic units, the
simplest example of an Euler system. Thaine used such units to construct explic-
itly a large collection of principal ideals of real abelian number fields to bound the
exponent of the different Galois eigencomponents of the ideal class group of the
field. Soon after this work, Kolyvagin independently discovered a similar method
[Kol88, Kol90], using Heegner points on (modular) rational elliptic curves to bound
their Selmer group. Another important construction has been made by Kato in
[Kat04] using Siegel units to prove bounds on Selmer groups of cuspidal eigen-
forms. What these works have in common is the idea of producing a large collec-
tion of classes in the Galois cohomology of certain p-adic Galois representations.
If these classes are compatible in some sense, then they can be used to bound some
Selmer groups.

A formalisation of this theory appeared in [Rub00] and [MR04] and we refer
the reader to such books for further details. We recall here the definition in the
simplest setting. Let Gg = Gal(Q/Q) be the absolute Galois group of Q and p be
a prime and E a finite extension of Q,. We consider the case of representations of

G on E-vector spaces V of finite dimension d, where we assume that
p:Gg — Aut(V) = GL,(E)

is continuous with respect to the profinite topology of Gg and the p-adic topology

on GL4(E). We also assume that such representation is unramified outside a finite

"Here by motive we simply mean a compatible system of Galois representations.
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set X of places including p and the archimedean places, i.e. for all / € ¥, we have
p (Iy) = {1}, where I, is the inertia group at /.

The first example is the representation Zp(1). Let w» = {x € Q* : X = 1}.
Then p,» is finite cyclic of order p” and Gg acts on it. The p-power map sends

Myt = Wy and we define
Zp(1) = limptpn,  Qp(1) :=Zp(1) @ Qp.
n

This is a 1-dimensional continuous Q,-representation, unramified outside {p}.
Moreover Gq acts by the cyclotomic character Xcye : Gg — Z,. For any given

representation V as above, we denote by V (n) the representation
V(n):=VaQ,1)*".

Finally, let Q(,,) be the cyclotomic extension of Q, obtained by adding to Q the m-
th roots of unity t,, = {x cQX:x" = 1} and denote by V* the dual representation
of V.

We are finally ready to give the definition of an Euler system for a represen-
tation V' as above. Recall that the inclusion Ggyy,,) O Gg(y,) for m | n induces a

corestriction map in Galois cohomology
coresggﬁzl)) CHY (Qun),V) = H' (Q(n), V).

An Euler system for V is a collection of Galois cohomology-classes (zy)m>1 With

zm € H'(Q(up),V*(1)) satisfying the following norm relations:

Q(time) — <m ¢ | m or (EX (NR)

Py(Frob, Dz  otherwise,

where Frob(g_1 is the geometric Frobenius and Py(x) = det(1 — Frobg_lx|V) is the

characteristic polynomial®.

ZNote that in [Rub00], an Euler system is defined by bounded classes, i.e. classes taking values
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Remark 1.1.1. We make a few comments about the more general case, where Q is

replaced by a number field K.

1. Following [Rub00, II.1], the definition of Euler system can be adapted to p-
adic Galois representations of the absolute Galois group of a number field K
by requiring that we have Galois cohomology classes “in every ray class field
extension of K and modifying the norm relations accordingly. Notice that

the ray class field extensions of QQ are precisely the cyclotomic fields.

2. The above-mentioned definition does not cover the case of Kolyvagin’s Heeg-
ner points. The classes obtained using those special points will not be defined
over abelian extensions of (Q, but rather over abelian extensions of an imag-
inary quadratic field K which are not abelian over Q. On the other hand, if
one tries to make the definition work for K, the problem is that the classes are
defined only over abelian extension of K which are anticyclotomic over QQ.
However, the process of “taking the Kolyvagin derivatives” of these classes
works also in that setting and the Kolyvagin system can be used to prove the

desired bound of the Selmer group of elliptic curves over K.

1.2 Selmer group bounds

Selmer groups are the algebraic objects attached to a p-adic Galois representation
V that are conjecturally linked to the analytic L-functions attached to V. If V is an
E-vector space and & denotes the ring of integers of E, we fix a Gg-stable lattice
T C V. The idea is that the Galois cohomology group H!(Q,T) carries a lot of
information about the representation, but it is too big, often of infinite rank. Hence
instead of considering H'!(Q,T), one defines a Selmer group by taking a subspace
cut out by imposing local conditions. For every place v of Q we have the natural
restriction map

loc, : Hl(@, T) —>H1(@\/7T>

in the cohomology of a fixed lattice T C V independent of m. Even though that is the right setting for
applications, we decided to define the classes with values in V, since this is the setting of Chapters 3
and 4. However, one can show that the classes there defined can be suitably modified to be integral.
See for example Remark 4.8.14.
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given by the inclusion Gg, C Gg. There are different Selmer structures one can

consider, one example is the following (which is usually referred to as strict Selmer

group):

locy(c) € ker (H' (Q,,T) — H' (I;,T)) if £4 peo
Sel(Q.T) = § c € H'(Q.T) ¢(c) (H' (Qp,T) (I;,T)) tp
loc,(c) =locs(c) =0.
Selmer structures are always defined by imposing the unramified condition outside

a finite set of places and one can show (see for example [MRO04, Proposition 2.1.5])
that this implies that the corresponding Selmer group has finite rank over &

Now assume that we have an integral Euler system for V, i.e. classes z,, €
H'(Q(w,),T*(1)) satisfying (NR). Under some technical assumptions on T, we

have the following result.

Theorem 1.2.1 (Cfr. 11.2.2 [Rub00]). If the bottom class z1 of the Euler system is

not zero, then the Selmer group Sel(Q,T) is finite.

Actually, this statement can be made more precise and one has a bound on the
size of the Selmer group in terms of the index of the class z, see op. cit. for more
details. We also remark that, even if the statement only involves the bottom class,
one really needs the full Euler system to produce such bound.

It may look surprising that classes in Galois cohomology over cyclotomic ex-
tensions are able to give information about Galois cohomology over Q, but this is
precisely where the Kolyvagin derivative process comes into play. Let ¢ be an odd
prime and I'y be the Galois group of Q(uy)/Q, which is cyclic of order £ — 1 and

generated by an element oy. For ¢ # p, one considers the derivative operator
-2
Dy:= Z io) € Z[y]. (Kolyvagin derivative)
i=0

An easy computation verifies the following equality

(Gg—l)Dg:(6—1)—Nm@(m)/Q. (1.2.1)
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One considers similarly, for any square-free integer m coprime to p and letting again

I, be the Galois group of Q(u,,)/Q, the operator

Dy =[] D¢ € Z[Ty).
tm
Let @ be a uniformiser of &. The idea is to consider the classes z,, seen as ele-
ments in H'(Q(uy),T*(1)/@M) for some integer M and an infinite set of integers
m chosen to satisfy certain congruence conditions with respect to @" (for example
one requires that all the primes dividing m are congruent to 1 modulo @"). Using

(1.2.1) and the norm relations (NR) one shows that
Dy -z € H' (@(.um)a T*(l)/wM)rm'

The next step is to prove that we can find a well-defined preimage, de-
noted by Ky, of Dy -z, under the restriction map H'(Q,T*(1)/@M) —
H' (Q(y), T*(1) /@), The localisation of these classes will satisfy certain
conditions, for example (NR) is used to relate locy( K ¢ ) and locy(kas,m) for £ m.
Classes satisfying such relations are the so-called Kolyvagin systems and they are

used to prove Theorem 1.2.1.

More details about how one can obtain such results are presented in Chapter
5, where the classes obtained by Heegner points, which indeed form a Kolyvagin
system, are used to bound a Selmer group over a quadratic imaginary field attached

to a rational elliptic curve.

Remark 1.2.2. In this type of argument, one does not need an Euler/Kolyvagin
system for all integers m. It suffices to have classes for a “large enough” infinite set
of integers. More precisely, the argument of [Rub00, Chapter V] applies Cebotarev
density theorem to find primes whose Frobenius is in the same conjugacy class of a
certain fixed element in the absolute Galois group of Q. For example, in the proof
of [LLZ18, Theorem 9.5.3], the authors verify that this condition forces such primes

to be inert in the real quadratic field.
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Finally, we briefly mention that the strategy one would like to apply to use
Theorem 1.2.1 for proving results like (rank 0) is to relate the bottom class z; of
the Euler system to the L-function L(V*(1),s). Proving for example that the critical
value L(V*(1),s0) vanishes if and only if z; = 0, combined with Theorem 1.2.1,

would give one implication of (rank 0).

1.3 A method for constructing Euler systems

Even though Euler systems are expected to exist for “representations coming from
geometry” (see [PR9S5, PR98]), it is very difficult to construct them. Until recently
the only known non-trivial constructions were cyclotomic units, elliptic units (see
for example [Rub91]) and Kato classes ([Kat04]). In the last few years some new
Euler systems have been constructed, e.g. an Euler system for the p-adic represen-
tation attached to the Rankin-Selberg convolution of two modular forms [LLZ14],
for the Asai representation of a quadratic Hilbert modular form [LLZ18] and for the
spin representation of a genus 2 Siegel modular form [LSZ20a]. Some progress
on the construction of an Euler system for a genus 3 Siegel modular form has
been made in [CRJ18]. The common input of these works, following the ideas
of [Kat04], are Siegel units, which are invertible elements in €'(Ygr,), where Ygr,
denotes the modular curve. More generally one considers Eisenstein classes, which
are elements in the first motivic cohomology group of Yg1,, with coefficients in some

specific motivic sheaves.

The idea of the aforementioned papers is then to consider embeddings GL; —
G (or GL; xgr, GLy, < G in [LSZ20a] and GL; Xgr, GL; XgL, GL, — G in
[CRJ18]), where G is a suitable algebraic group. These embeddings are chosen to be
such that they induce a closed embedding of Shimura varieties. Pushing forward the
Siegel units via such embedding, one gets classes in a motivic cohomology group
of the Shimura variety Y. Such embeddings are then suitably “perturbed” in order
to define classes in the motivic cohomology of the base change over cyclotomic
extensions Y X W,. Via the étale regulator one obtains classes in the continuous

étale cohomology of Y X W,. The group G is chosen using some numerology (see
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[LZ18, 2.4]), so that, after applying the Hochschild-Serre spectral sequence, one
obtains classes in the middle degree €tale cohomology of Y. More precisely, in the

simplest case, one finds classes

Zm € Hl (Q(."LM)aHgtimYG(YG7@7@P))'

The middle degree étale cohomology of Shimura varieties is the natural place where
Galois representations Vy attached to automorphic representations IT of the corre-
sponding group G appear. Hence projecting to the II-isotypic component of the
middle degree étale cohomology, one finds classes in H'(Q (), Vi) giving rise to
an Euler system. For a more detailed overview of the circle of ideas of these works

see the lecture notes [LZ18].

1.4 Norm relations and Asai-Flach classes

The main difficulty in proving that the classes constructed as above form an Eu-
ler system is the proof of the tame Euler system norm relations, i.e. comparing
classes z,,¢ and z,, when £ 1 m. In the Rankin-Selberg [LLZ14] and in the Asai case
[LLZ18], these relations are proved via some explicit computations in the Hecke al-
gebra. This approach would have been much more difficult (or even impossible) for
the Euler system attached to a genus 2 Siegel modular form, as the structure of the
group GSp, is too complicated. In [LSZ20a], indeed, the technique used was dif-
ferent: the norm relations were obtained using results from smooth representation
theory.

The classes appearing in Chapters 3 and 4 are the Asai-Flach classes, originally
constructed in [LLZ18]. Let us give more details about this case. Let F/Q be a real
quadratic field and let {0}, 05} be the set of embeddings of F into R. We let G be
the (Q-algebraic group obtained as the Weil restriction of GL, from F to Q. The
reflex field of the Hilbert modular surface Y is Q.

Let p be a prime and let f be a Hilbert cuspidal eigenform over F of level
coprime to p. One has a 2 dimensional p-adic Galois representation of Gal(Q/F)

associated to f. From that one can obtain, via tensor induction, a 4 dimensional
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p-adic Galois representation of Gg; it is called Asai representation attached to f
and we denote it by VJ{*S. This representation appears in the middle degree étale
cohomology of the Hilbert modular surface Y.

In [LLZ18], the authors constructed the Asai—Flach classes in the cohomology
of the Hilbert modular surface and were able to build Galois cohomology classes
satisfying (NR) assuming that F has trivial narrow class group. More precisely, they
prove (NR) in the case where / is inert and sketch the proof of the case where ¢ splits
and the primes above / are trivial in the narrow class group. In Chapter 3 we give the
details of the latter for classes in motivic cohomology with trivial coefficients. The
technique used involves some explicit computations in the Hecke algebra, which,
combined with the properties of Siegel units, allow to prove the desired relations.

In Chapter 4, we redefine such classes and prove norm relations with the
smooth representation theory technique introduced in [LLSZ20a], which allows to
remove the above assumptions and to prove (NR) for every unramified prime. We
therefore obtain the following result, with no need of assuming the triviality of the

narrow class group of F.

Theorem 1.4.1 ([LLZ18, Gro20]). Suppose f has level  # 1 and is of weights (k+
2,k +2), for k,k' > 0 and N sufficiently large® coprime to 6p and the discriminant
of F. Let j be an integer such that 0 < j < min(k,k"). Assume f is not a base change
lift of a modular form of GL; /Q. Then there exists an Euler system (zm[f ,j])le for
Vjﬁ*s(l + j), satisfying (NR).

In order to (re)define the Euler system constructed in [LLZ18], we construct

a special map o/ % ok

mot” for k. k', j as above with values in degree 3 motivic coho-

mology groups of some motivic sheaf Z(2) over Y. Such map will be of “global

nature”, more precisely it is a map
Kk j
A F o+ L (87,Q)® A (G(Ay),Q) — Hyo(Ys, 7(2))

satisfying some conditions of H(A ) x G(A y)-equivariance. Here we let H = GLo,

3in the sense of Remark 2.2.7.
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Ay is the group of finite adeles of Q, J#(G(Ar),Q) is the Hecke algebra over
G(Ay) and #(A%,Q) denotes the space of Schwartz functions on A%, which
parametrises Eisenstein classes. The Asai—Flach classes are defined as images of

explicit elements under &7 . % 11;1(;

J, Proving norm relations (in motivic cohomology)
turns out to be equivalent to proving relations locally at a certain prime ¢. In or-
der to do this, after recalling some standard tools of local representation theory, we
study local zeta integrals attached to principal series representations, using them to
characterise the local Euler factor appearing in (NR). The key result we need to use
such zeta integrals to prove tame norm relations is then a multiplicity one result
(see Theorem 4.5.1). It will follow from [Pra90, Theorem 1.1] in some cases and
we prove it in the remaining needed cases, using tools of Mackey theory following

the strategy used by Prasad in op. cit. and a result of [KMS03] in some degenerate

cases.

1.4.1 Future work and applications to Bloch-Kato conjecture

A priori, the construction above could give a system of trivial classes, namely we
do not know whether z,,//) = 0 for every m and every f. However, applying the
complex regulator to the bottom class in motivic cohomology and computing the
pairing with some differential form associated to a Hilbert modular form f, the au-
thors of [LLZ18] can prove (see [LLZ18, Corollary 5.4.9, Proposition 5.1.3]) that if
|k—k’| > 3 then the motivic class in non-zero. Assuming the conjectured injectivity
of the étale regulator, one has that the classes obtained in the étale cohomology of
the Hilbert modular surface are non-zero. A second piece of evidence of the non-
triviality of this construction is provided in [LSZ20b], where the authors express
the localisations at p of the étale classes in terms of overconvergent p-adic modular

forms.

Therefore, one can aim to find a sufficient condition for the class zl[f Il to
be different from zero and hence, applying Theorem 1.2.1, for the strict Selmer

group of TfAS(l + j) to be finite. In particular if s¢ is the central critical point for
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L((Vjﬁ“)*(—j),s), proving the implication
LV (=)).50) 0=z £0 (%)

could give new cases of the conjecture (rank 0). Usually, these types of results are
proved relating the bottom class of the Euler system to values of a suitable p-adic L-
functions. In the case of the Asai representation attached to Hilbert modular forms,
there is no known construction of a p-adic L-function interpolating the values of the
complex Asai L-function.

In current work in progress, we first plan to construct such an L-function, us-
ing methods recently developed in [LPSZ19], where the authors construct a p-adic
L-function for the spin representation of genus 2 Siegel modular forms, relying cru-
cially on Pilloni’s recent work on higher Hida theory [Pil20]. The idea of their
construction is as follows: in [Har04] Harris shows that critical values of the spin
L-function can be expressed as cup products of classes in coherent cohomology, and
Pilloni’s results can be used to show that these coherent cohomology classes vary
in p-adic families and hence give rise to a p-adic L-function. We plan to adapt this
strategy to quadratic Hilbert modular forms.

Hida’s theory of ordinary p-adic families of modular forms has been
used to construct p-adic Rankin—Selberg L-functions for GL; x GL; (by Hida
[Hid85] and Panchishkin [Pan83]), and triple product L-functions for the group
GL; x GL; x GL; (by Harris—Tilouine [HTO1]). Classical Hida theory is sufficient
for those cases since one works with products of the modular curve and it suffices
to vary p-adically the degree zero cohomology group. In the case of the Siegel
threefold or of the Hilbert modular surfaces, the classes one needs to vary are in the
degree one cohomology group and that is why higher Hida theory comes into play.

We are currently developing in [Gro] higher Hida theory for Hilbert modular
varieties (in the case where the prime p is totally split). We plan to use it to construct
a p-adic Asai L-function and then, in the quadratic case, aim to relate it to the Asai—
Flach Euler system via the so-called “explicit reciprocity laws”. They should relate

the image of the bottom Euler system class under the syntomic regulator to a (non-
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critical) value of the p-adic L-function. This is the key result needed for a proof of

(%).

1.5 Heegner points and Selmer groups of elliptic

curves

As already mentioned, the classes constructed from Heegner points do not fit in the
definition given above. However, with the Kolyvagin classes obtained from them
one still obtains interesting Selmer group bounds. Consider E an elliptic curve over
Q and L a number field. Fix p a rational prime; we write Sel,~(E/L),S,(E/L) for

the usual p-Selmer groups sitting into the following exact sequences

0—E(L)®Q,/Zy— Sely=(E/L) — m[p™] — 0 (1.5.1)

0—-E(L)®Z,— Sy(E/L) — lgr_nm[p”] — 0,

where 11 is the Tate-Shafarevic group of E/L. We have Sel,~(E/L) C
HY\(L,E[p]),S,(E/L) C H'(L,T,(E)), where E[p~] is the p™-torsion of E and
T,(E) denotes the p-adic Tate module of E.

Consider a quadratic imaginary field K satisfying the Heegner hypothesis, i.e.
such that all primes dividing the conductor of E split in K. Furthermore, we also
assume that the prime p splits in K. The theory of complex multiplication gives
a family of points on the modular curve of level equal to the conductor which are
rational over abelian extensions of K. More precisely, for every squarefree product
n of rational primes inert in K, one constructs a point defined over K|n|, the ring
class field of K of conductor n. Fixing a modular parametrisation of E yields a fam-
ily of points P[n| € E(K|[n]) which satisfy Euler system-like norm relations. After
applying the Kummer map and the Kolyvagin derivative operator to the points Pn],

one finds classes

Kn € Sel g () (K, Ty (E) /L T,(E)) C H' (K, Ty(E)/I.Ty(E))
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for some ideals I, C Z,, with I; = {0}. The classes k, lie in Selmer groups
defined using some transverse condition at primes dividing n and so that
Selz1) (K, Tp(E)) = Sp(E/K). Such classes form a Kolyvagin system and can
be used to prove interesting Selmer group bounds.

In Chapter 5, we prove the following theorem, generalising a result by Howard

[How04] in the case where the Gg-representation on E[p] is irreducible.

Theorem 1.5.1. Assume that p is a prime of good reduction for E and that
E[p|(K) =0. If k1 # 0 then S,(E/K) is a free Zy-module of rank one and there is
a finite Z,-module M such that Sel,~(E /K) = (Q,/Z,) ®M &M and

lengthy, (M) <lengthy, (S,(E/K)/xi Zp)+t,

where t is a non-negative integer depending only on Im(Gx — GL(T,(E)) ~
GL2(Zp)).

Remark 1.5.2. One can characterise the error term t and, in particular, we prove
thatr = 0 if E[p] is irreducible, recovering Howard’s result. In [CGLS20], we prove
the result by similar methods for the twist of the representation 7,,(E) by certain
anticyclotomic characters. This allows us to prove the Heegner point Iwasawa main
conjecture, originally formulated by Perrin-Riou in [PR87] and proved in the irre-

ducible case by Howard [How04].

1.5.1 Applications to the Birch and Swinnerton-Dyer conjecture

This type of result has interesting applications in terms of the conjecture (rank > 1).
More preciely, consider E/Q an elliptic curve. The L-function L(E,s) attached to
it is known to have analytic continuation to the whole complex plane thanks to the
work of Wiles, Taylor—Wiles and Breuil-Conrad—Diamond-Taylor [Wil95, TW95,
BCDTOT1]. Its central critical value is at s = 1. Moreover the Mordell-Weil theorem
asserts that the group of rational points of E is isomorphic to Z" & T, where T is
a finite abelian group and r > 0 is an integer, called the algebraic rank of E. The

Birch—Swinnerton-Dyer conjecture predicts that the Tate—Shafarevich group of E is
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finite and

ords— L(E,s) =r.

Notice that, assuming that the p-part of the Tate—Shafarevich group of E is finite, r
is also equal to the corank of the p-Selmer group Sel,~(E/Q) using (1.5.1).
The celebrated work of Gross—Zagier [GZ86] gives the following characteri-

sation of the class x;:

%L(E /K ,8) =1 # 0 < K1 #0. (1.5.2)

The combination of this result and the mentioned work of Kolyvagin, yields the

following remarkable case of the conjecture.

Theorem 1.5.3 (Gross—Zagier, Kolyvagin). Let E be an elliptic curve over QQ, then

(rank > 1) holds true in the rank one case. More precisely
ords—1 L(E,s) = 1 = rankz E(Q) = 1 and #11(E /Q) < eo.

In [CGLS20] we consider E/Q an elliptic curve and p an odd prime of good
ordinary reduction. Assume that £ admits a p-isogeny over Q. Recall that by the
work of Mazur [Maz78] this implies p < 37; however, by the same work, we also
have that for p < 13 we have infinitely many isomorphism classes of elliptic curves
with a rational p-isogeny. Under some assumptions, we prove the anticyclotomic
Iwasawa main conjecture for E /K using the generalisation of Theorem 1.5.1 men-
tioned in Remark 1.5.2. Choosing the field K carefully and following a strategy first
introduced by Skinner in [Ski20] in the irreducible case, we are then able to prove

the p-converse to Theorem 1.5.3.

Theorem 1.5.4 ([CGLS20]). Let E/Q be an elliptic curve and p an odd prime of
good ordinary reduction. Assume that E has a rational p-isogeny with the charac-
ter giving the action on its kernel being different from the trivial character or the
cyclotomic character when restricted to the decomposition group at p. We have that

“the p-part of the converse implication of (rank > 1) in the rank one case” holds
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true. More precisely

ranky E(Q) = 1 and #11(E /Q)[p”™] < oo = ords—| L(E,s) = 1.

Finally, we briefly mention that, as explained for example in [Wil06], the
Birch—Swinnerton-Dyer conjecture also predicts an exact formula for the leading
term of the Taylor expansion of L(E,s) at s = 1. The p-part of the formula for ellip-
tic curves of rank one has been established in some cases ([JSW17, Cas18]), always
using the irreducibility of the representation E[p] as an important assumption. In
the work [CGLS20], as another application of the anticyclotomic Iwasawa main
conjecture, we also deduce the p-part of the formula for elliptic curves of rank one
with a rational p-isogeny such that the character giving the action on its kernel is
either ramified at p and odd or unramified at p and even. In a future project, we also
plan to work on proving the p-part of the formula in the complementary case, i.e.
when the character is either unramified at p and odd or ramified at p and even. A
key input in the strategy will be again the anticyclotomic Iwasawa main conjecture

for E/K.



Chapter 2

Preliminaries

In this chapter we recall some background material, that will be useful in Chapter 3
and 4. In particular, we give the definition of modular curves, Siegel units, which are
invertible functions on some modular curves, and Hilbert modular surfaces. We then
talk about motivic cohomology and define some motivic sheaves. Siegel units (and
their generalisations) can be seen as elements in the motivic cohomology of modular
curves; they will be used to define Asai—Flach classes, which are elements in the
motivic cohomology of Hilbert modular surfaces. Finally, we recall the definition

of Hilbert modular forms and of certain Galois representations attached to them.

2.1 Modular curves and Siegel units

2.1.1 Modular curves

We start by recalling some definitions and properties of modular curves; the notation
is the same of [LLZ14] and [Kat04]. As general references to modular curves, we

refer to [DS05] or [DDT97].

We write E[N] for the N-torsion of an elliptic curve E and (—, —) gy : E[N] ¥

E[N]| — uy for its Weil pairing.

Definition 2.1.1 (See [DR73]). For N > 5, let Y (N) the smooth affine curve over Q
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representing the functor from the category of Q-schemes sending

isomorphism classes of triples (E, ey, e2),
S E elliptic curve over S and

ey, ey sections of E /S generating E[N]

Remark 2.1.2. The curve Y (N) comes with a universal elliptic curve & — Y (N),
which represents the functor S — {isomorphism classes of ((E,ej,ez),s), with
(E,e1,e2) € Y(N)(S) and s € E(S)}. Moreover, there is a surjective morphism

Y(N) — uy, where py is the scheme of primitive N-th roots of unity, given by

(E,e1,e2) — (e1,€2) gy

where (—, —) [y denotes the Weil pairing on E[N]. The fibre of Y (N)(C) over the
point e2/N ¢ 112 (C) is canonically identified with ['(N)\ .7, where 7 is the upper
half-plane and I'(N) the principal congruence subgroup of level N in SL,(Z), via
the map

t— (C/(Z+7Zr),7/N,1/N)

The group GL;,(Z/NZ) acts on Y (N) in the following way

cd

(“ b) -(E,ey,er) = (E,ae; +bey,cey +de).

Taking quotients of Y (N) by subgroups of GL,(Z/NZ) gives the other modular
curves we are interested in.

Definition 2.1.3. For M,N > 1 and L > 5 divisible by M and N, let Y (M,N) be the
quotient of Y (L) by the group

{(i) €GLL(Z/LZ):a—1=b=0 (modM),czd—le(modN)}.

The curve Y(M,N) represents the functor of triples (E,ej,ez) where e; has

order M, e, has order N and ey, e, generate a subgroup of E of order MN.
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Definition 2.1.4. Let Y;(N) be the smooth affine curve over Q representing the

functor
isomorphism classes of pairs (E,e),

S E elliptic curve over S and

e section of E /S of exact order N

One has that Y;(N) = Y(1,N); moreover the following proposition identifies
Y1(N) x u,, with the quotient of Y (L) for a suitable L.

Proposition 2.1.5. [LLZ14, Proposition 2.1.5]IfN > 5, m>1and L > 5 is divisible

by both N and m, then we have a map

Y(L) — Y1(N) X

(E,eq,e2) — ((E,ﬁez), <%€17,,L1€2>E[m])7

where (—,—) E[m] denotes the Weil pairing and W, is the scheme of primitive m-th
roots of unity. It identifies the target with the quotient of Y (L) by the subgroup of
GL,(Z/LZ) given by

{ ( j) € GLy(Z/LZ) :c=d—1=0 (mod N),ad —bc = 1 (modm)}.

Remark 2.1.6. We have u, = Spec(Q(u)), where Q(L,,) is the extension of Q
obtained adding all m-th roots of unity. If X is a variety over QQ, then X x u, is
the image of the base change of X over Q(u,,) under the forgetful functor from

Q(m)-varieties to Q-varieties.

We also define a map between certain modular curves, using again the Weil

pairing on elliptic curves.

Definition 2.1.7. Let m,N > 1, we define the morphism #,, : Y (m,mN) — Y| (N) X
W, given by
(E,e1,e2) = ((E/{er), [meal), (e1,Nez) i) -
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We notice that, writing explicitly this morphism on the complex points we find

(C/ZJrZr,%,%) — ((C/Z—FZ%;]%]) 7Cm>

and hence 1, is given by T — 7/m on the upper half plane.
Using the morphism t,, one is able to define a morphism as in the following

lemma.

Lemma 2.1.8. [LLZ14, Lemma 2.7.1] Let m,N > 1 with m*N > 5 and j € Z. There

is a unique morphism of algebraic varieties over C
Kj: Y1 (m*N)c — Y1(N)c

such that the diagram of morphism of complex-analytic manifolds

T—T+j/m

I H

| |

Yi(m?N)(C) —2 v, (N)(C)

commutes. The morphism is defined over Q(Ly,) and depends only on the residue

class of j modulo m.

Proof. The morphism k; is obtained via the composition of three maps. The
first one is the morphism f : Y| (m?N) X ,, — Y (m,mN) coming from the map
Y (m?>N) — Y (m,mN) sending (E,e1,e;) — (E/{mNey),[mNey], [e2]) which factors
through the quotient of ¥ (m*N) by the subgroup of matrices (0 .) :u =1 mod m.
Indeed we have

(u ) (E,e1,e2) = (E,uei +bey, e2) —(E/(mNez), [mNuey +mNbes], [es])

01

= (E/<mN€2>, [mN€1]7 [32])7

where we used the fact that u = 1+ km for some integer k and that m*Ne; = 0. Such

a quotient is identified, thanks to Proposition 2.1.5, with Y (mzN ) X WUp,. The map
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is given on ¢ by the multiplication by m. One then considers the map induced by
the action of ((1) :) on Y (m,mN), ie. (E,e1,ez) — (E,e; + jNea,ez), given on S
by 7 — 7+ j. Finally we get k; as the composition

(-

Y1 (m2N) X g — Y (m,mN) ~—25 Y (m,mN) 2 Y1 (N) X .

This map is given on .7 by T — T+ j/m, depends only on the class of j modulo
m and is defined over Q(u,,) since all the three maps above commute with the

projections to [y,. O]

2.1.2 Siegel units
We now want to define some special elements in (Y (N))*, following [Kat04,
§1.1].

Let E be an elliptic curve over a scheme S and ¢ an integer, we denote by E,
the kernel of the multiplication by ¢ on E, viewed as Cartier divisor on E. Similarly
we write (0) for the zero section of E, viewed as Cartier divisor. We denote by c*
the pullback by the multiplication by c. Moreover if a is an integer coprime with c,
the multiplication by a restricts to a morphism a : E \ E,. — E \ E.. We then denote
by N, the normmap N, : O(E\ E,.)* — O(E\ E.)*.

The key proposition used for defining Kato’s Siegel units is then the following.
Proposition 2.1.9. [Kat04, Proposition 1.3] Let E be an elliptic curve over a

scheme S and c an integer such that (6,c) = 1. Then

(1) there exists a unique .6 € O(E\ E;)* satisfying:

(i) the divisor of O is c*(0) — E;

(ii) Nu(.Op) = O for any integer a coprime with c.

(2) Ifd is another integer such that (6,d) = 1 then

(a6E) (c*(a0r)) " = (c65) (d*(c6F)) ",

as elements in O(E \ E.q)™.
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(3) For t € I, consider the elliptic curve E = C/(Z+ 7). Writing .61 := .6,
forz € E\ E,, one has

where g = AT — o272 g

Y (t) = H 1—4") H 1—q"t 1.

n>0 n>1

(4) If h: E — E' is an isogeny of elliptic curves over S of degree coprime to ¢ and

if we denote by h, the norm map, then h,(.0p) = .Op.

(5) If T — S is a morphism, Er := E XgT and pr : Er — E is the base change
morphism, then pr*(.6g) = 6g;.

Consider now & — Y (N) the universal elliptic curve over Y (N) and (a,f) €
(Q/7Z)*\ {(0,0)} of order dividing by N and coprime with the integer ¢, so that we
can write (¢, 3) = (a/N,b/N) for a,b € 7. We also define the morphism

lg, g = aej + bes : Y(N) — g\@@c,
i.e. the morphism that sends an S-point (E,ej,ez) of Y(N) to ((E,ej,ez),ae; +

bey) € £(S), for S a Q-scheme.

Remark 2.1.10. The image of 14 g is in &\ & since c is coprime with the order of

(a,B) = (a/N,b/N) and e, e, have order N.
We can finally define Siegel units.

Definition 2.1.11. If (a,f),c,N are as above we define (g4 := lzﬁ(ceg) €
O(Y(N))*. Furthermore, if c = 1 mod N and ¢ # 1 we let g4 g 1= 8¢ ® (c? —

Dleo¥(N)*2Q.

Remark 2.1.12. We will see in § 2.3 that Siegel units can be seen as elements in

the motivic cohomology of the modular curve (see Example 2.3.10).
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We observe that g, g is independent on the choice of the integer ¢ used in the

definition. Indeed we have the following.

Lemma 2.1.13. The element g, g is well defined; in other words, if c,d =1 mod N
and c,d # +1 then

8ap® (=1 =4gqp@(d*—1)"

Proof. Using the definition of the Siegel units and (2) of Proposition 2.1.9 we get

2 -1 (d*-1) 1
Cga,ﬁ®(c 1) _CgaJ} ® (Cz—l)(dz—l)

C2 * *
(a8a,B)” 1y pd (c9£’)® 1
1o pC (a08)c8ap (2 =1)(d>—1)

Using then the fact that ¢,d = 1, one has that 1, g = ¢+ 14 g = d - 14 g and hence we

get

2
2 —1 (dga,ﬁ) c8a.p 1
c8 ®((c"—1 = ®
P ( ) (d&x,ﬁ)(cgoc,ﬁ) (c2=1)(d*—1)

=d8a,p ® (d2 - 1)71'

]

We will also need some properties of the Siegel units, that we collect in the

following proposition.

Proposition 2.1.14. (i) Let 6 € GLy(Z/NZ). Recall that this group acts on
Y(N); moreover for (a, ) as above we write (&',') = (a,B)0o. Then we

have

G*(Cga,ﬁ) =8 p and G*<g(x,ﬁ> =8a' B

(ii) Let m > 1 be a nonzero integer coprime with 6 and the orders of a, B, then
8a,p (mz) = Hga,ﬁ’(z)a
ﬁl

where the product is over all B’ € Q/Z such that m’ = .
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(iii) We can write go g, with (&,3) = (a/N,b/N), as function on F, via the
pullback along the map 7€ — Y (N)(C), then we find

—a a 2 n _a n_—a _
8ap(t) = g"/ 12PN FUD@ND T (1 - ¢"¢*™N ) - TT(1 - ¢"a N Ey?),
n>1

n>0

where g = ™7,

Proof. (i) The universal property of the elliptic curve & /Y (N) says that for any
triple (E,ej,e2), where E is an elliptic curve over S and ej,e; are sections of E
over S generating E[N], there exists a unique morphism S — Y (N) such that E
is isomorphic to the pullback & Xy(y) S, i.e. we have the following commutative

diagram

EZ(g)XY(N)SL &

| |

S — Y(N).

Moreover an S-section of & is given by x = (E, e, ez, P) where (E,ej,e2) € Y (N)(S)

and P € E(S), i.e. we have the following diagram

Using Proposition 2.1.9 (5), we get that .0 (x) = x*(.05) = P*pr*(.0¢) =¢ Og(P).
Writing (o, B) = (m/N,n/N) and & = (j j) and considering (E, ey, e2) € Y (N)(S)

we find
(lapo0)((E,e1,e2)) = (E,ae; +bey,cey +dey, (ma+nc)ey + (mb+nd)ey),

(lor,p)(E,e1,e2) = (E,ey1,ea,(ma+nc)ey + (mb+nd)ey).
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Hence we obtain, considering the two Y (N)-sections of & 14 g0 0 and 14 g/,
G*(l(X’B)*CQg((E, el, 82)) = CQE((mcH—nc)el + (mb—i—nd)ez) = Ceg((la/’ﬁ/)(E,el , 62)),

for any S-section (E,ey,e>), and therefore the equality 6*(cg¢.8) = c&a,p- The
second equality descends from this, by definition of the elements g4 g, 8o p/-

(ii1) The formula is obtained via direct computation using the analytic descrip-
tion of theta elements (Proposition 2.1.9 (3)), see [Kat04, 1.9].

(i) We show how, using point (iii), one can deduce (ii). First of all, writing
(a,B) = (a/N,b/N), we have that the product on the RHS of the equality runs

through the elements B’ = b/mN +i/m for 0 <i < m— 1. Then we get

Hgoc ﬁ’ — m(1/12—a/2N-+(1/2)( )(a/N?)) H H a/NCI{?[mCrln)

n>0 i=
: ];[1 11 (1—q"q “Ngghet.

We now use the equality x” — @ = H;”:_ll(x — ), which gives, for x = 1 and

o =q"qNeh, (a=q"q Nk respectively),

m—1

H (1 - a/NCNmCm) = ( qnmqma/Ncll\zl)’

m—1
[T —q"a“NEung) =1 —q"g "N,

i=1

So we obtained g,/ »/n(mT) = [1p' 80,/ (T)- O

Lemma 2.1.15. Let m and (o, B) be as in (ii) of the previous Proposition. We have

the equality

Sa,p = H Sa! B>
a/7Bl

where the product runs over (&', B') such that (mo',mB’) = (a, B).

Proof. The formula is obtained using Proposition 2.1.9(1.ii). See [Kat04, Lemma
1.7 (2)]. [
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Remark 2.1.16. Viewing Y;(N) as quotient of Y (N) by the subgroup U’ = { (0 1) :
u€ (Z/NZ)*} of GLy(Z/NZ) as in Definition 2.1.3, one can use point (i) of the
previous proposition to see that g, b € O(Y1(N))* @ Q. Indeed for any ¢’ € U’,
one gets (G/)*go% =802 In particular we have 80, € 0(Y(m*>N))* ®Q and
80, € O(Y1(mN))* ® Q. We can then regard these Siegel units via pullback
along Y1 (m?N) x t, — Y1 (m?N) and Y (m,mN) — Y;(mN) as elements 8o, b €

ﬁ(Yl (mZN) X .um)>< ®@Q and go,% € ﬁ(Y(mva»X ®Q.

m2N

We conclude this discussion about Siegel units by proving a lemma that will
be useful later. First recall the definition of f, the morphism used in the proof of

Lemma 2.1.8. It came from the morphism

Y (m*N) = Y (m,mN)

(E,e1,e2) — (E/{mNey),[mNei],es]).

On complex points it is defined by 7 — mT. Moreover it factors through the quotient
by the subgroup U defining Y} (m?N) x W,, as quotient of ¥ (m?N) as in the previous

remark. Hence f defines a map
f:Y1(m®N) X fhy, — Y (m,mN). 2.1.1)

Lemma 2.1.17. Viewing go1/my € O(Y (m,mN))* and g 2y € O(Y1 (m?N) x

Wn)* as in remark 2.1.16, we have

80,1/mN = f+80,1/m>N-

Proof. We write U and U’ for the two subgroups of GL,(Z/m?NZ) given by

v={(!):c=d=1=0 (mN),a=1 (m)}.

U':{<“17> cc=0 (m*N),a=1 (m),d=1 (mN)}

cd

We have U C U’ and we identify the quotient of ¥ (m*N) by U with Y| (m?>N) X .
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We also consider the set of representatives of U /U’ given by the matrices (; l+(:nNt>’

where 0 <7 < m. We then find that the pushforward of g, ; /2y via the natural map
h: Y (m*N) x W, — U’ \ Y (m?N) is given by

m—1 m—1
H (:) HOmNt> 80,1/m2N(T) = H g071/m2N+t/m(T) = gO,l/mN(MT)a
=0 =0

where we used Proposition 2.1.14 (i) and (ii) in the first and second equality respec-

tively. To conclude we notice that conjugation by <0 ?) sends U’ to

U//:{<ab> ic=d—1=0 (mN),a—1=b=0 (m)},

cd

which is the subgroup defining Y (m,mN), i.e. U”\ Y (m>N) =Y (m,mN). Writing
O for the map U’ \ Y (m?N) — Y (m,mN) defined by the multiplication by ((; ?)

and using (0,,)« = (0,,-1)* we get

(Om Oh)*go,l/mZN(f) = (Gmfl)*go,umzv(mf) = go,l/mN(T>-

Since 0,, 0 h = f, we are done. O]

2.2 Hilbert modular surfaces

In this section we recall some definitions and properties of Hilbert modular surfaces.
We then define embeddings of modular curves into these surfaces. These can be

thought as degenerate case of the diagonal embedding (and its perturbations)
Yi(N) X thn — Y1(N)? X

used in [LLZ14] to define Beilinson—Flach elements.

2.2.1 Definitions and the closed embedding of the modular curve

We start by fixing some notation. We let F' be a real quadratic field, we denote
by OF its ring of integers, by 0 its different ideal and we fix a set {0}, 0>} of real

embeddings of F; if A € F, we write ; = 0;(1). Let G,, be the multiplicative
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group. We then define following algebraic groups.

Definition 2.2.1. We define the algebraic groups D := Res@ Gp, G := Resg2 GL,
and G* := G X p get G-

Remark 2.2.2. Notice that we have a natural embedding GL,; — G*. In the de-
generate case where FF = Q & Q, one recovers the embedding GL; — GL; x GL,.
We now define a Shimura variety associated to it (corresponding to the product of
two modular curves in the degenerate case) and then get a closed embedding of the

modular curve in it.

Let 7% be the set of the elements of F ® C of totally positive imaginary part;
it can be identified with two copies of the upper half plane J# x JZ. We have a
natural action of G(R)™ (the elements of totally positive determinant) given by the

two real embeddings, namely for (71, 7,) € F and < j) € G(R)"
ab _ (a1t1+b1 a2m+by
(c d) ) (Tl’ TZ) o (C1T1+d1 ’ csz+d2>

We will denote by A ¢ the finite adeles of Q.

Definition 2.2.3. Let H € {G,G*,GL,}. An open compact subgroup U C H (Ay)

is sufficiently small if for every h € H (A f) the quotient

H(Q)*nhUR™!
un{(;)) ue o5}

acts without fixed points on 7% (or on 57 if H = GL,).

Definition 2.2.4 (Cfr. [Del79]). For U* (respectively U, Ug) an open compact
subgroup of G*(A ) (respectively of G(A ), GLy(Ay)), we denote by Y5+ (U™) (re-
spectively Y(U),Yg1,(Ug)) the complex manifold of dimension 2 (respectively 2

and 1) given by
Y- (U") = G (Q\[G"(As) x 5] | U™,

Y6(U)=G(Q)"\[G(As) x #7] | U,
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Yo, (Ug) = GL2(Q) "\ [GLa(Ay) x ] / Ug.

It is known that, when the considered subgroup is sufficiently small, such complex
manifolds admit a unique structure of smooth quasi-projective variety defined over
Q. By abuse of notation we write Y+ (U*),Y5(U),Ys1,(Ugp) also to denote such Q-

varieties. The analytification of their complex points is given by the above quotients.

Remark 2.2.5. These are instances of a more general class of varieties, called
Shimura varieties, that descend to varieties defined over a number field, called reflex
field, see [Del79, Mil05]. For more details about this point of view in the Hilbert
modular variety case (i.e. when considering the groups G, G* for a totally real field)

see for example [Gor02, Edi01, BG20].

Let O = Op ®y 7, where Z denotes the profinite completion of Z. We now

define specific level subgroups U.

Definition 2.2.6. Let 91,91 be non-zero ideals of . We define
UM, 0N) = {y € GL(6r) : y= 1 mod (?jj i’jj) }

and U* (N, N) := U (M, MN) N G*. We also write U (M) := U(1,M) and U;(N) =
U*(1,91). One defines similarly groups Ugp(M,N) C GLy(Af) for integers M, N.

Considering a third ideal £, let

Nne N

UOM,N(L)) = {ye GL(OF) : y=1mod ( R>}

N N

UM(L),N) = {}/E GLy(0F): y=1mod (m WL) }

One defines similarly groups Ug(M,N({)),Ug(M({),N) C GLy(Ay) for integers
M,N.Z.

Remark 2.2.7. If 9 is sufficiently large, then the subgroups U;(M),U;(N) are
sufficiently small. More precisely, this follows from ([Dim09, Lemma 2.1(iii)-(iv)],
by assuming that )1 is coprime to 6 and the discriminant of F* and that 1 is divisible

by a prime satisfying the conditions of Lemma 2.1(iii) of op. cit. We will always
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assume this to be the case. Moreover, working with GL,, we recover the modular

curves of the previous sections, namely Yo(Ug(M,N)) =Y (M,N).

We write Y{*(91) = Y5+ (U{ (M)) and Y, (N) = Yo1,(Ug(1,N)). In particular the
first is a smooth surface and latter is the modular curve of Definition 2.1.4. If 9 is

an ideal such that TNZ = (N), we have Ug(1,N) = U (M) NGL,(Af).

The action of GL,(F) on .#% uses the two embedding of F, so that we find
that the action of y € '} () on JZ x 7 restricted to the subgroup I'| (N) coincides

with the usual action of I'{ (N) on each component, since o7, 0, fix Z.

So the embedding of algebraic groups GL; — G* induces a closed embedding
1Y (N) = Y[ (M),

which is precisely the one we were aiming for.

We now describe the embedding 1 on complex points. First of all, notice that 1

commutes with the natural determinant maps
det: Y| (N) — (QX)+\A;/1 +N7Z ~ uy,

det: Y, (M) — (QX)+\A;/(1 +NOF)NZL ~ py.

Moreover, fixing a primitive complex N-th root of unity { as in Remark 2.1.2, taking

fibres over ¢ of ¥ (N)(C) and Y} ()(C), yields a map

1:GL(Q) " NUI(N)\ A — G*(Q)T NUf(N)\AH x A .

Recalling that for a Q scheme S we have Res& G(S) = G(SxqF), we get
D(Q)=G,(Q®F)=F*and G(Q) = GLy(Q® F) = GL,(F). So we find

G*(Q) =GLy(F) ®px Q* = {y € GLy(F) : dety € Q},

G*(Q)" ={y€e GLy(F) : dety € Qo}.
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Moreover, using the fact that & NF = OF and (OF)* NQxq = {+1}, we get

G(Q)r NU (M) = {y: ( ) € GLy(0p) ia=d =1,c=0mod m};

cd
(M) := G*(Q)F NU;(N) = {y: ( j) € SLy(0r):a=d=1,c=0mod m}.
Similarly, using, ZNQxo = {41}, as we were anticipating, we get
GL>(Q)* NU; (N) = {y: (j j) €SLy(Z):a=d= I,CEOmodN}
=T1(N) =T1(M)NGLy(Q) "

Hence, on complex points, the embedding t is given by the diagonal map .7 —
X I

LT N\ — T (M) \ A x A

T+— (T,7).

One can similarly describe closed embeddings 1 : Y (M,N) — Y*(9t,0) for ideal
M, N such that (M) =9MNZ and (N) =NNZ.

We now fix a € OF and consider the matrix (:) i‘) If the ideal 9t divides the
ideal 9, the subgroup U* (91, N) is normalized by this matrix, i.e. for y € U* (9, N)

()7 (22) evremo,

Definition 2.2.8. For a € OF, 9 dividing 91, we define u, to be the endomorphism
of Y*(91,M) induced by multiplication by the matrix ((') 1) , 1.e. given on the com-

plex points by T = (7,7) — t+a=(t+a;,7 +az), for T € H%.

Remark 2.2.9. Notice that the map u, is well defined because

u(y 1) = (; 7)7-12 (;T>7<;‘f)1 (;T) T=7 u,(1),

for Yy € T(OM,MN).
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2.2.2 Interpretation as moduli space

Hilbert modular surfaces of the form Y*(9t,91) are known to be fine moduli space
of polarised abelian surfaces with some level structure, in complete analogy with

modular curves.

2.2.2.1 Preliminaries on polarized abelian varieties with real multi-

plication
We start with some general definitions and results about the objects that the Hilbert
modular surfaces will parametrize. We keep the discussion more general, consid-
ering F a totally real field of degree g over Q. We will moreover stick to the case
of complex abelian varieties, since we will only describe the complex points of the

Hilbert modular varieties. We will follow closely [Gor02, § 2].

Definition 2.2.10. A complex abelian variety with real multiplication (also denoted

by RM) by OF is a g-dimensional abelian variety A over C with a fixed embedding
i:O0p — End(A).

Example 2.2.11. The easiest example is the one of the (iso-simple) abelian variety

obtained by taking an elliptic curve E over C and considering the abelian variety
E®y O 2 E&,

whose complex points are given by E(C) ® OF and where the isomorphism is ob-
tained by fixing a Z-basis of OF. The action of OF on the abelian variety is the
canonical right O action. In the case g = 2, writing F = Q(+/D) and choosing the
Z-basis of Or {1,v/D}if D=2,3 (mod 4) and {1,(1++/D)/2} if D=1 (mod 4),
some easy computations show that the endomorphism obtained by the action of v/D

and (1 ++/D) /2 respectively on E? is given by the matrix

0D 0 (D—1)/4 .
<1 0) and (1 1 ) respectively.
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Remark 2.2.12. If (A, i) is a complex abelian variety with RM by OF, so is its dual.
This can be seen by defining an embedding & < End(A") simply by taking for
each A € Of the dual map of i(A).

We now proceed with the construction of some complex abelian variety with
RM. Take 7 € J#¢ and define A; := Ort + OF. First of all we notice that

Dedekind’s lemma yields the R-linear independence of

(Gl(al)v"'vcg(al))v”' 7(Gl(a8)7"'7cg(ag>)

in RE, for ; a basis of 0. Hence A is a lattice in C&. Then one can show that for
any re (0 1)*

H.1(x,y) = zg;Im(Ti)lci(r)xi)Ti, (2.2.1)

im

where z,7 € C8, is a Riemann form for Az (see [Gor02, Lemma 2.8,2.9] for a
proof). Using the standard connection between Riemann forms and polarizations,
we get that the complex torus A; := C8/A is polarized and hence is a complex
abelian variety with RM by OF.

Now we give the last definitions needed in order to state the final result.

Definition 2.2.13. Let (A,i) an abelian variety with RM by 0. We define
My ={A:A—=AY: L =21"and A is Op-linear},
M ={A € My : M\isapolarization}.

In the case of A = A; we have that the map sending r — H,; gives an iso-
morphism mz : (071, (071)*) = (M, #,"). We have the following result, see for
example [Gor02, Theorem 11.2.17]].

Theorem 2.2.14. (1) The isomorphism classes of complex abelian varieties (A, i)

with RM by Op such that there exists an isomorphism (Ma, M, ) —
(01, (0=17T) are parametrized by the quotient GLy(OF) "\ .
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(2) The isomorphism classes of complex abelian varieties (A,i,m) with RM by O

with a fixed isomorphism m : (Mu, M) = (071, (071)T) are parametrized

by the quotient SLy(OF ) \ 5.

2.2.2.2 The universal abelian variety over the Hilbert modular sur-

face

We know go back to the setting of 2.2.1. We can describe explicitly the universal

abelian variety over Y+ (991,0%). We start with the following definition.

Definition 2.2.15. (i) Let P be the subgroup of Res@ GLj3 consisting of the ma-

trices of the form
1 r s

0 a b
0 ¢ d

b
d

and let P* the subgroup with (“ ) e G".

(ii) Let Cp:=F ®gC ~ C? and JF = 7 x Cp. We define an action of P(R)™

on Zf via
1 r s
0 bl (e = at—+b z4+rt+s
a 2= ct+d ct+d )
0 ¢ d

We then write, for V* C P*(A f) an open compact,

A(V) =P Q)T \[P"(Ay) x JF] / V™.

We first of all notice that the action of P*(Q)" on . is compatible with the
action of G*(Q)™ on it. Moreover if U* is the image of V* in G*, the natural map
H#r — FF induces

A(V*) = Y (U).

The following result is [LLZ18, Proposition 2.5.2].
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Theorem 2.2.16. IF V* is given by the elements of P* such that <f :) eU* C
G*(Z) and r,s € OF, then A(U*) := A(V*) is an abelian variety over Yg+(U*) with

endomorphisms by OF.

Remark 2.2.17. The above definition makes sense also for a totally real field F' of

degree greater than 2. Similarly the stated theorem holds in general.

We will not go into the proof of this theorem, but we are going to look in
details what happens when we take one of the congruence subgroups U* defined
above. The easiest case is the case U* = GL,(0F) NG* = U*(1,1). Proceeding as

we have done before we get
Y* :=Y5(U")(C) =SLy(OF) \ .

Taking V* as in the theorem, one similarly finds A := A(U*)(C) =V \ (#F x Cp),

where
1 r s
a b
V= 0 a b :I’,SEﬁF, ESLZ(ﬁF)
c d
0 ¢ d

We want to view Y* as moduli space of certain abelian varieties. To do so we
consider the map A — Y* and look at its fibres. Take T = (7,7') € %, we write A¢

for the fibre over [7] € Y.

Claim. A — Y* parametrizes isomorphism classes of complex abelian surfaces with

thby’@%.

Proof of Claim. The fibres A¢, for every T € J¢F, are isomorphic as complex
abelian variety with RM to the 2-dimensional complex tori C? / 0T ® OF. We
then essentially use Theorem 2.2.14. All complex tori isomorphic as abelian vari-

ety with fixed polarization and with RM by O to C? / Orz ® O = C? /A are of

the form C? / OF ?%IS @ OF for (“ Z> € SL,(0OF), where the isomorphism is given

-1
by z+— ("'Hd' ’ ) .z= —~—. Now, the fibre over 7 is the quotient of C> by 0’2,

0 ot +dy ct+d’

were the action is given by (r,s) -z = z+ r7 + s, hence precisely the complex torus
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at+b
cT+d’

C?/A;. Changing the representative for the class [z], i.e. considering we

find C?> modulo the action of 0% given by (r,s) -z = Zjﬁ;s,

(cz+d) - C? /A = C? | Or 2 & 0. O

hence we get precisely

Remark 2.2.18. The same can be done by replacing P by an analogous subgroup
Pg of GL3 /Q and _#F by ¢ x C. For Ug = GL(Z) one then finds the universal

elliptic curve over Y (1).

Again as in the case of modular curves, one can rearrange the above reason-
ing to describe the Hilbert modular surfaces as moduli space parametrizing triples
(A, 19, 17) with A polarized abelian surface with RM by OF as above and gy, 1y

embeddings of the form
I - m_] ﬁF/ﬁF = Asors,

g N L Op ) OF < Asoys.

In particular if for example 9t = (M) where M is an integer, this gives a point P of
order M of A.
Now recall that for an abelian variety A there is a non-degenerate alternating

bilinear pairing
() Yapa T AM] x AY[M] —

where A[M] and AY[M] denote the M-torsion of A and AV respectively. If A is

polarized and has endomorphism by OF, this induces an Of-linear pairing

If we consider the Shimura variety corresponding to G*, we get that, considering
for example Y*(M, M), i.e. the one corresponding to the subgroup U*(M,MN),
for M integer, it parametrizes triples (A, P,1) where A is as above, P is a M-torsion

point of A and 1 is an embedding 1 : (M)~ O /O < Ay such that
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(i) the pairing considered above gives (P,1(1/M)) € uy,
(ii) P and 1(1/M) are independent over 0.

In particular condition (i) reflects the fact that the determinant map is defined with

target in G, and not in Resg G- Hence it induces

Y*(M,MN) — Wy,

(A, P 1) = (P1(1/M))ppp)-

Using this, we are now able to define a map corresponding to the one in Definition

2.1.7 for modular curves.
Definition 2.2.19. For 91 ideal of O and M > 1 integer, we define

tay Y (M, MN) — Y'(N) X wyy
(A7P7l) — ((A/<P>7Ml) ) <P7l(1/M>>A[M])

Remark 2.2.20. On complex points the map ty, is given by 7 — A%[, for 7 € J%.

Proposition 2.2.21. For b € (Z/MZ)*, the map ty intertwines the action of (z ?)

on Y*(M,MN) with the automorphism 1 x 6, on Y;'(M) x ws,, where oy, : & + £

Proof. We need to prove the commutativity of the following diagram

Y*(M,MN) —— Y*(M,MN)

tMl ltM

* (¢} 1 0 * [¢]
YiE(00) x py — YiE(00) <y,

where the top arrow is the morphism given by the action of (Z ?) , sending (A, P, 1) —

(A,bP,1). Since b € (Z/MZ)* and P has order M, we have (P) = (bP). So we find

tu((4,6P,1)) = [(A/(P),M 1), (bP,1(1/M))] = [(A/(P),M - 1), (P.L(1/M))"],
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using the bilinearity of the pairing. On the other side we get

(1x0p)(tm((A, P 1)) = (1 x 0p)([(A/(P), M - 1), (P,1(1/M))])

=[(A/(P).M 1), (P1(1/M))"].

2.2.2.3 The action of ¢4 on the abelian surface

Let V* = ﬁFz x U*, where U* C G*(Ay) is sufficiently small. In other words, V*
is as in Theorem 2.2.16. By abuse of notation, we will denote by A(U*) the abelian
variety A(V*) — Y*(U*). Consider

§€9:=G(Q)TG*(Ay) C G(Ay) suchthat g~ has entries in OF.

Assuming that both U* and gU*g~! are contained in G(Z) we can define (see
[LLZ18, Definition 2.5.4]) an Op-isogeny of abelian varieties over Y*(U*). Firstly
note that by [LLZ18, Remark 2.5.3], we can write

AU ) =P (Q7T\[Z x 7F] | V",

where &7 is the subgroup of P(As) with ( ) € ¢. So we have a left action of g as

b
d

above on A(U*). We then define the Or-isogeny
CDg:A(U*)—>g*A(gU*g_1).
given by
(-2
5 2 sy \08 52 x —1 5 2 x —1
A(OF xU") —= A((OF g7 ') xgU g ) = A(OF xgUg ")

L . . 5 2 5 2 ) .
where the second map is given by the inclusion (0F -g~1') C OF". Such isogenies
satisfy the relation

Dy g, = 85 (D) 0Dy, (2.2.2)
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when all the terms are defined. Moreover if g = <: Xﬂ) for x € OF, then
gU*¢™! = U* and &, is simply the multiplication by x on A(U*). Therefore,
using this, we can extend the definition of ®, for any g € ¢ as elements of

Hom(A (U*),g*A (gU*g_l)) ® Q.

2.3 Motivic cohomology

In this section we recall some properties of motivic cohomology and recall the def-
inition of motivic cohomology with coefficients (i.e. with coefficients over relative

Chow motives). We then define the coefficients sheaves we will be working with.

2.3.1 Motivic cohomology

Let X be an object in the category Sm of smooth variety over a field k C C. Then
Voevodsky defined motivic cohomology as homomorphisms in the triangulated cat-
egory P4 (k) of motivic complexes. For a construction of this category see

[Voe02]; he equips it with a functor M : Sm — 2.4 _(k) and with a Tate object
Q(1).

Definition 2.3.1. The motivic cohomology of X as above is defined by
Hynot(X,Q())) := Homg 41 (M(X),Q()])-

Voevodsky shows that this motivic cohomology group can be identified with

hypercohomology with respect to the Zariski topology, more precisely

Hpo(X,Q())) = Hyo (X, Ca(Z( ),

where Co(Z(j)) is the Suslin complex of sheaves in the Zariski topology (see
[Voe02] for more details).

The idea of motives and motivic cohomology is in some sense to collect to-
gether the information coming from all Weil cohomology theories 7. Among
the others we can consider .7 € {ét,dR,B}, continuous étale, de Rham and Betti

cohomology theories. We write Q 5 for the trivial coefficient sheaf of the coho-
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mology theory .7 and Q4 (n) for the n-th power of Q 4, where in our examples
Qu (1) = Qp(1),Qur(1) = k,Qp (1) = 2miQ. All these cohomology theories are

then related by natural maps, the comparison isomorphisms, that give
Hir (X, k) 04 C ~ Hy(X(C),Q) ® C

Hét<X7QP) = H]lfi (X((C):Q) ®Q @p-

The first isomorphism is a standard result, for the proof of the second one see for
example [Mil, 1.21].
To relate then motivic cohomology groups to the “more traditional” ones, there

are regulator maps
regz : Hnot(X,Q(n)) = H7 (X, Q7 (n)),

all compatible with comparison isomorphisms. For this see [Hub0O].

We can similarly construct motivic cohomology with “non trivial coefficient
sheaves”, using the formalism of relative Chow motives of [DM91]. Consider S
a smooth, connected, quasiprojective k-variety and the category of relative Chow
motives over S, denoted by CHM(S)q. It is a pseudo-abelian tensor category. For
any field of characteristic zero one can similarly consider CHM(S);, defined as the
pseudo-abelian envelope of CHM(S)g ® L. The objects of such category are triples
(X, p,n), where X is a smooth projective S-variety of relative dimension m, p is an
idempotent element of CH"(X xgX) and n € Z. The Tate object (S,id, 1) will be
denoted by Q(1) or L(1).

This category comes equipped with a contravariant functor from the category

SmPr(S) of smooth projective S-schemes
M : SmPr(S) — CHM(S)q.

One can take .#  the realisation of an object in .%# € CHM(S)., in a cohomology

theory .7 as above. This takes value in the category of sheaves on S with extra
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structure depending on 7. This is why we will often, by abuse of notation, refer to
an object .# as motivic sheaf. In particular, if 7 = ét is the p-adic étale cohomology
and L is a p-adic field, % is a lisse étale L-sheaf over S. The sheaves .% 5 are
naturally graded objects, in particular .Zg = &,Gr/.Z and, if .# = M(X), then
Gr/ Ty = ,%’g{ (X /S) the relative étale cohomology sheaf of X /S of degree j.

Theorem 2.3.2 ((DM91]). Let A/S be an abelian variety. Then there is a canonical
decomposition in the category of relative Chow motives over S
2dimA

M@A) = @ M),
i=0

such that for all the realisations Gr' M'(A) 7 = 0 if i # j.

We are now ready to define motivic cohomology groups with coefficients in
# = (X,p,n), an object in the category CHM(S) as above. We assume that the

realisations of .% are non-zero only in one degree r and let
HE o (8,7 () = p*HL (X, Q(j +n)),

where recall that p* is the endomorphism on the cohomology of X given by
p ECH™(X x5X).

As above, we find regulator maps
1eg7 : Hno(S,.7 (1)) = H7 (8, 7 7(J)),

and similarly when extending to a field extension L.
If1:5 < T is a closed immersion of codimension d, there exists a pullback
functor

1* : CHM(T), — CHM(S),

and a Gysin map

Lo Hyoy(S,1°F () = Hipot (T, F (j +d)), (2.3.1)
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For more details see [LLZ18, § 3.1d], [IMVWO06, Theorem 15.15].

2.3.2 Relative Chow motives over modular curves and Hilbert

modular surfaces

We will be interested in sheaves over the modular curve and over the Hilbert
modular surface arising from universal modular abelian varieties over them. We
first fix some notation. Given a Shimura datum (G,X), we write Y for the in-
verse limit over K, compact open subgroups of G(A ), of the varieties Y (K) :=
G(Q)\G(Ay) x X /K. Similarly every time we consider a cohomology group for
Yg we mean the limit of the cohomology groups of Y (K). Throughout this section
we will write H = GL,. We work with G = H,G*, G, for which X is the Siegel
plane C \ R in the first case and two copies of the Siegel plane in the second and
third ones (with action of G*(Q),G(Q) given by the two real embeddings o7, 0,).
We obtain a smooth curve Yy, which is the infinite level modular curve, and smooth
surfaces Y+, Y which are infinite level Hilbert modular surfaces. They are defined
over Q.

If G = H, G, then the corresponding finite level Shimura varieties are of PEL
type and, using the functor of [Ancl5, Theorem 8.6], one can associate to repre-
sentations of G a relative Chow motive over Yg (K) for any sufficiently small level
K. The following result is due to Ancona and is a special case of [Anc15, Theorem

8.6], which applies more generally to PEL type Shimura varieties.

Theorem 2.3.3 ([Ancl5]). Let G = H,G* and K a sufficiently small subgroup of

G. There is a functor
Z6 : Repg(G) — CHM(Yg(K))

from the category of representations of G over Q to the category of relative Chow
motives over Yg(K) such that

o FG preserves tensor products and duals;

» Z(det) is the motive Q(1), where det: G — Gy,



2.3. Motivic cohomology 53

* if V is the dual of the standard representation of G, then (V) =M (<),

where </ is the universal abelian variety over Yg(K);

« for any prime p, the p-adic étale realisation of #¢(V) is the étale lisse sheaf'

associated to V@ Q, seen as a left K-representation via K — G(Ay) —

G(Qp).

One can clearly extend the functors of the above theorem replacing Q by a
larger extension L.

The following result (see [Tor19, Theorem 9.7], where it is proved more gen-
erally for admissible pairs of Shimura data) explains how the functors behave with

respect to the Gysin map (2.3.1) induced by the closed immersion
1:Yg(KNH(Ay)) = Yo+ (K),

for K a sufficiently small subgroup of G*(Ay).

Theorem 2.3.4 ([Tor19]). The following diagram is commutative up to natural iso-

morphism

Repg(G*) ——%— CHM(¥Yg- (K))

bk

Repg(H) —" CHM(Yx(K NH(Ay))),

where the first vertical arrow denotes the restriction to H and 1* is the pullback

functor.

This theorem, combined with the existence of the Gysin map (2.3.1), tells us
that whenever W € Repg(H) is a direct summand of the restriction to H of a repre-

sentation V' € Repg(G*), the pushforward by 1 defines a map

Lt Hyol (Y (KO H(Ap)), Z1 (W) = Hypol (Y (KO H(Ay)), 1 (F6 (V)

— HF (Y6 (K), Fo- (V)(1)). (2.3.2)

mot

I'See for example [Nek18, 0.4].
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This kind of maps will be used in § 4.7.1 for the definition of Asai—Flach classes. In

the easiest case, if we take V to be the determinant representation the map is simply
Lt Hyol(Yi (K NH(A)),Q(1)) = Hyot (Yo (K), Q(2)) (2.3.3)

and taking i = 1 it will be used in § 3.1 to define Asai—Flach classes in the trivial
coefficients case.
We now briefly go over the definitions of the relative Chow motives we will be

working with.

2.3.2.1 Modular curves

We consider & — Y, where Y = Yy (K) is the modular curve of level K, K is a
sufficiently small open compact of H(A ) and & is the universal elliptic curve over

Y.

Definition 2.3.5. Let k > 0 be an integer. We define TSym* .7 (&) to be the object
of CHM(Y), given by the image of the functor .#y of the TSym* power? of the

standard representation of GL,.

By the properties of Ancona’s functor, TSym’ﬁ%”dé" ) is the k-th symmetric
power of M'(&)(1) = M' (&)Y, where M' (&) is given by the decomposition of
Theorem 2.3.2 and (1) denotes the twist by L(1).

2.3.2.2 Hilbert modular surfaces

Similarly, consider 7 — Y*, where Y* = Y+(K*) is the Hilbert modular surface of
level K*, K* is a sufficiently small open compact of G*(A ) and .27 is the universal
abelian surface over Y*. Recall that OF acts on <7 by endomorphisms. Consider

the following object of CHM(Y ™),

Hi () =M (7)(2) =M ()"

2TSymX (V) is defined to be the submodule of invariants under the permutation actions of the
symmetric group &; in the k-fold tensor product V@ ---®@ V. It is the dual of the more familiar
module Sym* (V") of &;-coinvariants of V¥V ®---@V".
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By enlarging L if necessary, we assume we have two non-zero embeddings 6; : F —>

L. Then the object considered above decomposes as
Hi () = A )V & Hi ()P,

where 7 (7)) is the direct summand where, for x € O, we have [x], = 0;(x)

(see [LLZ18, § 3.2b] for more details).

Definition 2.3.6. Let k,k’ > 0 be integers. We define TSym*) 57 («7) to be the
object of CHM(Y™*),, given by the image under Ancona’s functor of the tensor prod-
uct of the TSym* power and TSymk/ power of the standard representation of each

copy of GL,.
Explicitly, using the above decomposition, TSym**) 7 (o7) is
TSym' (A (/)) @ TSym* (1. (7)?)

One can similarly define Sym®**) 7 (</) and we have that its dual is
TSymk¥1 4 (o).

The Shimura variety for the larger group G is not of PEL type, so we cannot
directly apply Ancona’s functor. However, from the relative Chow motives defined
above, one constructs motivic sheaves for Hilbert modular surfaces with respect to
G. The étale cohomology of the étale realisation of these sheaves will be the natural
place where the Galois representations we are interested in will show up. Let us
start by considering integers k,k’,¢,t' such that k,k’ > 0 and k + 2t = k' +2t'. Write
A for the quadruple (k,k’,¢,¢"). Fix an open compact subgroup U C G(Ay) and
consider Y(U) and Y+ (U N G*(Af)). One considers, with notation as above, the
sheaf J?Lm over Y5+« (UNG*(Ay)) defined by

{TSymk (#() V) @ det (%(ﬁ)“))t] ® {TSymk, (#()?) @ det <%(%)(2))t/] .
(2.34)
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Let, asin 2.2.2.3,
4 =G(Q)TG*(Ay).

One defines a relative Chow motive JKLW over Y5(U), using the map Y+(U N

G*(Ay)) = Yg(U), whose fibres are given (see [LLZ18, Proposition 2.2.5]) by the

orbits of the finite group

9NU

A= Trea)-@@)n)

In particular one can write Yg(U) as disjoint union over a finite set of el-
ements ¢ € G(Ay), whose determinant are representatives of the finite set

A ¢/(F*)"T A7 det(U), of the following varieties
- * — - * 4 -
Y- (sUg ' NG*(Ay))/A(gUsg™") =Im(Yg-(sUg™ ' NG (Af)) = Ys(gUg ™).

The authors construct in [LLZ18, § 3.2c] a relative Chow motive on each of these

components considering the pushforward of (2.3.4) under the projection map gg;

they then take its the image under a projector with respect to the action of A(gUg™!)

(see [LLZ18, Proposition 3.2.8, Definition 3.2.9]. One then gets a relative Chow
4]

motive 7" over Yg(U), independent (up to a canonical isomorphism) of the

choice of the representatives defining the components of Y5(U).

Remark 2.3.7. One has similarly the dual sheaf ji’i(l) over Yg. The (-adic
étale realisation of ,%’im is the lisse Q-sheaf associated to the representation of

Gle-Iom(F,]R)

given by
(Symk(Stdv) ® detf(Sth)) ® (s_ymk’ (Std") ® det” (Stdv)) ,

where Std" is the dual of the standard two-dimensional representation of GL,. This

is the sheaf fw considered in [Nek07, §5.5].
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2.3.2.3 Infinite level sheaves

The sheaves constructed above on finite level modular curves and Shimura vari-
eties for G* and G give rise to a H (A r)-equivariant (respectively ¢-equivariant and
G(A f)-equivariant) relative Chow motive over the infinite level varieties Yz, Y5+, Y,

in the sense of [LSZ20a, § 6.2].

More precisely, recall that we showed in 2.2.2.3 that the abelian varieties
o [Ye+(U*) for varying U* C G*(Ar) have natural ¢-equivariant structure up to
isogenies. It induces a ¢-equivariant structure on the relative Chow motive 7 (<)
via pullback and hence also on TSym[k’kq H1(</). In other words, the functor of

Theorem 2.3.3, gives rise to a functor
Fo+ Repg(G*) — CHM(Yg+)?,

where the target is the category of ¢-equivariant relative Chow motives on the pro-
variety Yg+.

The case of modular curves is completely analogous, since H(Ay) acts by
isogenies as in 2.2.2.3 on the universal elliptic curve & /Yy (U) for varying U C

H(Ay). So we obtain a functor
F : Repg(H) — CHM(Yy) A7),

Finally, the action of G(Af) on the relative Chow motive J“i”LW comes from
the construction given above and the ¢-action defined in 2.2.2.3. Indeed if we take

g € G(Ay), a sufficiently small subgroup U and consider the natural map
Y6(U) = Y6(gUg ™),

the relative Chow motives constructed on those surfaces are built from relative
Chow motives over varieties of the form Yg+(g;U g;l NG*) and Yg+(g;gU g’lglf1 N
G*) respectively, where the finite set of g; can be chosen to be the same (since

det(U) = det(gUg™")). Since whenever the determinant of two matrices is in the
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same class in the finite quotient Ay ./(F* )*A; det(U) we can assume they differ

by an element in ¢, for every i we can construct maps
Yo (giUg ' NG*) = Yo (g,8Ug 'g; ' NGY)

for some j, which are given by multiplication by an element in ¢ and hence induce

a map between the corresponding relative Chow motives as in 2.2.2.3.

From now on, we will write TSym* 54 (&), TSym ¥ 4 (o), ,%’im to denote
by abuse of notation both the finite level Chow motives and the infinite level ones.
No confusion will arise, since it will be clear from the context which is the object
we are working with. Moreover, when we write motivic cohomology of the pro-
varieties Yy, Y5+, Y with coefficients in infinite level relative Chow motives, we
mean the limit of the cohomology group of the finite level Shimura varieties with

coefficients in the corresponding finite level Chow motives.

Finally, we remark that the Hecke operators we define later (as double cosets in
§ 3.2 or as locally constant compactly supported functions on the adelic points of the
group in Chapter 4) act naturally on the universal abelian varieties we considered
(similarly as in 2.2.2.3, see also [LLZ18, Remark 2.6.1]) and hence on the relative
Chow motives we constructed. In particular they act on the motivic cohomology

groups with coefficients in such relative Chow motives.

2.3.2.4 Clebsch—Gordan map

Write Y = Yy (U*NGL,) and Y* = Y+ (U*) for U* a sufficiently small subgroup of
G*(Ay). Write &,.o7 for the elliptic curve over ¥ and the abelian surface over ¥*

respectively. We have a closed embedding
1:Y Y™

One has that the abelian variety 1*(.2¢) is canonically isomorphic to Of ®z &, com-

patibly with the & action. In particular both 1* (. (27)1)) and 1* (74, (7)(?)) can
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be identified with 777 (&"). Hence we obtain two maps

TSym“* 4 (&) — TSymk 74,(&) @ TSym* 74,(€) = 1* (TSymV"kq %(%)) ,

2
L(1) = NA(E) > Hi(8) © #1(8) =1 (TSymlM Ay (7))
L

Combining these two maps using multiplication in the symmetric tensor algebra,

we find

Proposition 2.3.8. (/LLZI8, Proposition 3.3.1]). For any integers k. k', j satisfying

0 < j < min(k,k"), we have a morphism
CGIRKI T ymk =27 s (&) — 1*(TSym* ¥ 14 (7)) (— ).

This is analogous to the map defined in [KLZ15] (see Corollary 5.2.2) for the
GL; x GL; case. It is an instance of the maps produced using Theorem 2.3.4.

Moreover, consider Y (U) for U C G(A ) such that UNG*(Af) = U*, one can
use the fact that by construction the pullback to Y* of the sheaf %”Lw over Y(U) is
TSym ¥ 54 (o) (t +1') to find

CGER TSymh ¥ =2 s (&) — (A (—j—1 =), (2.3.5)

where 15 denotes the natural embedding Y < Y5 (U).

2.3.3 Chow groups

In this section, we briefly mention the relation between motivic cohomology with
trivial coefficients and Chow groups. Bloch defined the higher Chow groups
CHI(X, j) in [Blo86]. Without going into the definition, we cite the theorem which

shows the relationship with motivic cohomology.

Theorem 2.3.9. For any X smooth variety over a field k C C and p,q > 0, there is

a natural isomorphism

Hrlrjlot(Xag(Q)) = CHq<X72q _p) ®Q
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Proof. See [Voe02, Corollary 2]. ]
Example 2.3.10. The theorem implies for example that
Hpo(X,Q(1)) = CH'(X, 1) ®Q = 6(X)* 2 Q.

where for the last identification we refer to [MVWO06, Corollary 4.2]. In particular,
if X is the modular curve Y (N), the Siegel units of Definition 2.1.11 define elements
in H! (Y(N),Q(1)). There is a generalisation to non-trivial coefficients, namely

there are elements called Eisenstein classes, which will be recalled in § 4.6, defined

in Hyoi (Y (N), TSym* 52 (£)(1)).

Using Quillen K-theory and the Gersten complex (see [Qui73]), one gets the
following useful theorem. For more details see [LLZ14, Corollary 2.5.7, Proposi-

tion 2.5.8].

Theorem 2.3.11. If X is a smooth variety of finite type over a field k, then
CH?(X,1) = Z*(X,1)/T, where Z*(X,1) is the kernel of a boundary map in the

named Gersten complex and T is some subgroup. More explicitly

1

72(X,1) = {Z<Ci’ ;) : C; subvariety of codimension 1,; € k(C;)™ s.t. Zdiv(¢,~) = 0} .

Remark 2.3.12. We stated the previous theorem very vaguely, avoiding precise
definitions. We justify this saying that we will only have to deal with Z> (X, 1) and,
moreover, this is where the Euler systems classes of [LLZ14, LLZ18] are defined.
The compatibilities properties already hold in that group, with no need to get to the

quotient.

2.4 Hilbert modular forms and the Asai L-function

In this section, we recall the simplest definition of Hilbert modular forms and dis-

cuss some Galois representations and L-functions attached to them.
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2.4.1 Hilbert modular forms

With the same notation as in the previous sections, we now want to define Hilbert
modular forms for F. We first of all fix §~! a totally positive generator of the
fractional ideal 9!, which is principal in the case of quadratic fields. We will
consider subgroups I' C GL,(0F) of the form U(1,91) N G(Q)". Moreover for

A €F andr = (r1,r;) € Z*, we will write AX = A" A,* and extend this to /.

Definition 2.4.1. A Hilbert modular form of level 9 and weight r = (r,r2) € Z?,
with | + 2t = ry +2# is a function f : 5 x G(Af) — C such that

(i) forevery g € G(Ay), f(g,—) is holomorphic on & = € x I,
(ii) forevery u € U(1,M),8 € G(Ay), T € HF, f(gu,7) = f(8,7):

(iii) for every y~! = (“ b) € G(Q)" and for every 7 = (1,7') € H#F, f(vg,T) =

cd

f(8.2)),, 7", where

f(8.2)),, 7" = (dety)Normy: g (dety) (e +d) “f (5.7 '7)

Remark 2.4.2 (Fourier expansion). If f is a Hilbert cusp form, then it has a Fourier-

Whittaker expansion of the form

f( <; (1)) 71) :H X ||AF,f Z a_lc(ax, f)eZEi(alf‘HXzT/)’
oEF>T
where ¢(—, f) is a locally constant C-valued function on Aj . and c(x, f) depends

only on the fractional ideal generated by x and is zero unless it is contained in § .

2.4.1.1 Hecke operators and Hilbert eigenforms

On the space of Hilbert modular forms of level U(1,9%) one has Hecke operators
T (n) for every integral ideal of &F coprime with 1. The definition is analogous to
the one for classical modular forms. In the next chapters we will give the definitions
of Hecke operators: one can see them as double cosets as in § 3.2 or as locally
constant compactly supported functions on G(Ay) as in Chapter 4. We then can

give the following definition.
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Definition 2.4.3. A cuspidal Hilbert modular form is an eigenform if it is an eigen-

vector for every Hecke operator T'(n). We say that it is normalised if ¢(6~!, f) =

§—(i+12)/2.

One has that, applying [Shi78, 2.20 et seq.], the Hecke operators map the set of
Hilbert modular forms with algebraic Fourier coefficients to itself and this implies

that the eigenvalues are algebraic numbers. For more details see [Shi78, Proposition

2.2].

Remark 2.4.4 (Automorphic representations). It is a standard result (explained
for example in [Kud03] and [vdG88, 1.7]) that there exists a correspondence be-
tween holomorphic Hilbert modular forms and the associated automorphic func-
tions, which are slowly decreasing functions on the quotient G(Q)\G(A) satisfying
certain conditions. The space of such (cuspidal) functions decomposes as direct
sum of irreducible admissible (g, K.) X G(A ) modules, where g is the Lie algebra
of G and K. is the maximal compact subgroup. Such modules are the irreducible

cuspidal automorphic representations of G. They can be written as

T=T.® (xR m).

Fixing the (g,K.)-module 7., to be a discrete series of weight (k,k’), these rep-
resentations appear in the middle degree parabolic étale cohomology of Y; with
coefficients in the étale realisation of the sheaves defined above (see Remark 2.3.7,
Theorem 4.8.6). One associates to each of these representations 7 a Hilbert mod-
ular eigenform of weight (k,k"). The action of the Hecke algebra on the G(Af)-
representation, as described in Chapter 4, corresponds to the action of Hecke op-
erators on the eigenform. Moreover, for almost every ¢, the G(Qy)-representation

7y is spherical (see § 4.2.4) and we study such representations in more details in

§4.3-§4.4.

2.4.2 Asai L-function

As in the case of classical modular forms, one can attach to a Hilbert eigenform f of

level 91, nebentype € and weight (k+ 2, K+ 2), with k, k' > 0, a Galois representa-
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tion. More precisely, let L be the number field generated by the Hecke eigenvalues

A of f with respect to T'(m). Let w an integer such that w = k =k’ mod 2.

Theorem 2.4.5 (Blasius, Rogawski, Taylor). For every finite place v of L, one has

a Galois representation
pry: Gal(F /F) - GLa(Ly)

such that for all primes p { MNmy ;q(v), the representation py ., is unramified at p
and

det(1-Xpy, (Frob,;l)) =1- A@X—i—NmF/Q(p)W’ls(p)Xz.

One can then consider the classical L-function attached to f, i.e. the one at-
tached to the system of Galois representations (py.,),. In [FLHS15], it is proved that
all elliptic curves over real quadratic fields are modular and hence the L-function of
one of those elliptic curve is equal to the L-function of f for some Hilbert eigenform
f of parallel weight 2.

The motivic Asai-Flach classes we work with are not related to this represen-
tation, but rather to a representation of Gg obtained from py,,. This representation
appears in the parabolic étale cohomology of the Hilbert modular variety Y, as we

will recall in § 4.8.2 (see Theorem 4.8.6).

Definition 2.4.6. Writing as before k + 2t = k' + 2¢' one defines the Asai Galois

representation attached to f by

(@ Ind) (Prp) @Ly(t+1') : Gal(Q/Q) — GL4(Ly),

where @ — Ind denotes the tensor induction’. It is called the Asai Galois represen-

tation attached to f because it was first considered by Asai in [Asa77].

Remark 2.4.7. The tensor induction of a representation W from a subgroup H < G
of index n to G is given considering W®" with the action of H" x S,, on it and view-

ing G inside H" x §,, via the Frobenius embedding. Fixing cosets representatives

3See for example [Pac03, Definition 1.1].
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{Hgi,...,Hg,} we call m the permutation representation of G on them, obtained
by right multiplication. For every x € G, there is then a unique /(i,x) € H such that

gi-x=h(i,x) *8i.n(x)- The Frobenius embedding is given by
x e (A1), A, ), 7(x)):

In our situation H = G, G = Gg and n = 2. In the degenerate case where we re-
place F by Q& Q we have G = H and can think about the set of coset representatives
as {H-1,H -1}. Hence h(1,x) = h(2,x) = x and (x) = id for every x € G, hence
the tensor induction of a representation W is simply given by the representation
W ®@W. So if we start with a classical eigenform f and view pS v as degenerate

case as above, we obtain the Rankin-Selberg convolution ps,, ® py,.

One can then consider the corresponding L-function, called Asai L-function

and denoted by Las(f,s). Itis defined as a product of local Euler factors as follows.

Definition 2.4.8. For f as above, we define the local Euler factor for £ # p to be
P{S(f£,X) :=det(1 — X Frob, ' |(V/)"),

where Froby is the arithmetic Frobenius at ¢ and I, is the inertia subgroup at /.
The local Euler factor at p is defined by the same polynomial acting on the Galois
representation pA . for some auxiliary w such that p fw.

Then the Asai L-function is defined by

LAS f7 H 7

This product converges for Re(s) > k+k and it admits an analytic continuation
to the whole complex plane. It also satisfies a functional equation relating the value
at s with the value at k + k" — 1 — 5. The Euler factors at good primes are explicitly

characterised as follows

Proposition 2.4.9. ([Asa77, Theorem 2], [LLZIS, Proposition 4.3.4]) If f is of level
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0N and £t Nm(N)p then the polynomial P} (f, (XY is equal to

(1—amX)(1— a1 foX)(1 - BroX)(1 —Bi1fX), ifl=1-bLsplitsin F

(1—oaX)(1-BX)(1—aBX?) if is inertin F .

where 0, B; and &, 3 are the roots of X* —ay.(f)X + 0"~ 'e(1;) and of X* —a,(f)X +
2v=Vg(¢) respectively, where w = k+2+2t = k' +2+2¢'.

Remark 2.4.10. In §4.3-§4.4, the polynomials of the previous proposition will
be studied and described in terms of local zeta integrals associated to the G(Qy)-

representations 7, of Remark 2.4.4.



Chapter 3

Asai-Flach classes tame norm
relations by means of Hecke algebra

congruences

In this chapter we define Asai—Flach classes, following [LLZ18], as elements in the
motivic cohomology of the Hilbert modular surface. We give the definition only in
the case of trivial coefficients, namely working with classes defined as pushforward
of Siegel units in some higher Chow group of the Hilbert modular surface. We also
prove that these classes satisfy tame norm relations at primes which split in ' and
are narrowly principal. The method is the one used in [LLZ18, Section 7], where
it is used to prove tame norm relations for inert primes and is only sketched for the
above mentioned primes. We give the details of such method in this case. It relies
on very explicit computations in the Hecke algebra acting on the cohomology of the

Hilbert modular surface.

3.1 Definition of Asai-Flach classes (trivial coeffi-

cients case)

Recall that F is a real quadratic field of discriminant D, OF its ring of integers, 0 its

different. Recall that the embedding GL, C G* defines a closed immersion

L:YI(N) =Y (M),
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for M integral ideal of F such that MNZ = (N). We finally define Asai—Flach
classes for Y;*(91). We have the pushforward map defined in (2.3.3),

L Hyo (Y1 (N),Q(1)) =0(Y1(N))* © Q — Hpo, (Y] (91),Q(2)) = CHA(¥{(7), 1) © Q

g— (1(11(N)), t(g)),

where we applied Theorem 2.3.9 and used the identifications given in Example

2.3.10 for the modular curve Y; (N) and Theorem 2.3.11 for the surface ¥} ().

Definition 3.1.1 (Asai—Flach classes for M = 1). We define the Asai—Flach class

AF| o to be the image of the Siegel unit g |/ under 1, i.e.
AF v = (1(V1(N)), 1(go,1/n)) € CH*(Y*(M), 1).

Remark 3.1.2 (Beilinson—Flach classes). As we already said many times,
Beilinson—Flach classes (for M = 1) are obtained precisely in the same way, but

using the closed embedding
A:Yi(N) = Y1(N)?,

and getting an element in CH?(Y;(N)?,1) ® Q.

One then defines more general Asai—Flach classes on the base extension of
Yy (1), which is a smooth surface over Q, to cyclotomic fields, using Remark 2.1.6.

Consider M > 1 integer. Via pullback under the natural map
h:Y*(M,MN) — Y (MN)

coming from the inclusion U* (M, M) C U*(1,MMN), one can see the Asai—Flach
class AF| ym, as an element in CH?(Y*(M,MM),1) ® Q. Recall from definition
2.2.8 that for a € O we have an endomorphism u, of Y* (M, M91) and from defini-
tion 2.2.19 a map ty : Y*(M,MMN) — Y;" (M) x upy, where, for the ease of notation,

we denote by U, the group scheme of primitive m-th roots of unity.
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Definition 3.1.3 (translated Asai—Flach classes). Let M be an integer such that 1 is
divisible by M. Let a € Op /(M Of + Z), we then define

AFym.q := (U)+ AF] o € CHX(Y* (M, M), 1).

Definition 3.1.4 (Asai—Flach classes for M > 1). We define the Asai—Flach class
AF) 014 to be the image of AF ym € CH?(Y*(M,MM),1) ® Q under (ty ouy)s,

1.€.
AFya = (tr)(AFya) = (t 00« (AF; pm) € CH2 (Y] (M) x g, 1) @ Q.

If a = 0, we will simply write AFy; oz for AFy o 0.

Lemma 3.1.5. Consider the map 1y s , given by the composition
e Y1 (MAN) x iy L5 ¥ (M, MN) S5 v* (M, M) 2 v (M, M) 25 Y7 () x g,

where f is defined in (2.1.1). We then have AFy ;m , = (lM7‘ﬁ,a)*(gO71/M2N)-

Proof. Recall that the map f is the one obtained by the map Y (M?N) — Y (M, MN)
sending (E,ey,ey) — (E/(Mey),[MNey],[ez]), which factors through the quotient,

and hence defines a morphism
f:Y1(M?N) x upy — Y (M, MN).

Since the following diagram commutes

Y (M,MN) — Y;(MN)

‘| |

Y*(M,MN) —— Y;"(MMN),

where the horizontal arrow are the natural projection maps, the result follows from
the definition of AF; ym and the equality go 1 /mn = f+80,1/m2n-> Proved in Lemma

2.1.17. []



3.1. Definition of Asai—Flach classes (trivial coefficients case) 69

Remark 3.1.6. Notice that, using Remark 2.2.20, the description of f and u,, we

get that the map 17 3, 4 18 given on complex points by

T—>Mt— (Mt,M7)— (MT+a;,MT+ay) — <r+ %’TJFZ_;) :
Remark 3.1.7. Thanks to the previous lemma, we can also show that the ele-
ment AFj, g, depends only on the class of a in Op/(MOF + 7). We want to
show that AFys 4 is equal to (the pullback via Y} (M) x upy — Y7 (M) of) AFy ;
ifa € MOFr + 7. Indeed if a € MOF, we have that (; T) € U*(M,MN) and hence
u, = ug = idy+(y pyon)- Moreover if a € Z, then we can consider the automorphism
Ug : Y(M,MN) — Y(M,MN) given by the action of the matrix <:J ]) and get the

following commutative diagram

Y(M,MN) —*— Y(M,MN)

| !

Y*(M,MN) —— Y*(M,MN).

We know that (1)« = (u—,)" and that (u—a)*(80,1/mn) = 80,1/mn- thanks to Propo-

sition 2.1.14 (i). Hence we find that, if a € Z,

(lM,‘II,a)*(gO,I/MZN) = (tM)*(l/)*«“a)*(gOJ/MN)) = (le,o>*(go,1/M2N)~

Hence we want to show that (lM,‘JLO)*(gO,l/WN) = AF| », denoting by AF; i, by
abuse of notation, the pullback of AF; o from Y[ (9) to Y}*(91) x ups. We can write
o= (1xid)otyo f, where 1:Y;(N) — Y;"(N). Now, the composition 7y o f is
equal to the projection 7 : Y; (M?N) X p,, — Y1(N) X U,,. Viewing both the target
and the source as quotients of ¥ (M?N) as in Proposition 2.1.5, we find the explicit

description of the pushforward via 7, i.e.

k
1 0
”*(80,1/M2N)= | | (,-N .HN) (80,1/M2N): | | 8i/M21/M2N+j/M? = 80,1/N»
0<i,j<M?—1 0<i,j<M?—1

where in the second equality we used Proposition 2.1.14 (i) and in the last one
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Lemma 2.1.15, for m = M?. Moreover 80,1/ denotes the pullback of gg /v from

Y1(N) to Y1 (N) x uy. Therefore we proved the desired equality.

We conclude this section proving a useful property of the Asai—Flach classes.

Proposition 3.1.8. For b € (Z/MZ)*, denote by o, the automorphism of Wy given
by & — £P. We then have

* o~ —~
b0
<o 1) AFy o = AFy mp-1, and 0y AFyma = AFy o514

Proof. We will prove only the second equality, the first one follows similarly, thanks
to Proposition 2.2.21. Using the description given in the previous lemma, we
need to check that (i) o (tn.m.4)+(80,1/m2n) = (. p-14)+(80,1/a2n) and that (ii)
Gb_l (. m.a)(Y) = (W mp-14)(Y), Where we wrote Y =Y, (M?N) x . First of all,
using the properties of the pushforward and the fact that o} is an automorphism
with inverse 0,-1, we get that 6, = (0},-1). Using Proposition 2.2.21 and Propo-
sition 2.1.14 (i) (together with the computation (0, 1/M2N) (”;‘ j’) = (0,1/M2N))

one gets

0, (tr)(uao 10 f):(80 1 /m2n) = tm (b: ?>* (:) T>*(l o )+(80,1/m2n)
=t (") (1) () (o nelgoasmen)

=tyow, 1,01 Of(go,1/M2N) = AFy b1

where in the third equality we used the relation

ANOEERION a1

To prove (ii) we proceed similarly. We have that the elements in (u 010 f)(Y) are
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in the form ((1) 1) - (u,u), for u € f(Y). Hence, using again (3.1.1), we can write

o5 (tma) (¥) —tM(( ) () ue f(0)})
w0 ) e )
a2t swe 70

= (tyouy-1,010f)(Y),

where in the last equality we used the fact that the image of {(u,u) :u € f(Y)} via
(”: ?) is again {(u,u) :u € f(Y)}: indeed, clearly the matrix sends the image of the
diagonal embedding to itself; one gets the other inclusion using the inverse matrix.

Hence we get (ii). ]

3.2 Hecke operators as double cosets

We let ¢ denote the subgroup G(Q)"G* (Af) C G (Ay) as in 2.2.2.3. Then there
are bijections Y* (U*) = G(Q)"\ [¢ x | /U* for each U*, and we obtain maps

of Q-varieties for any g € ¢4
Y*(U*) —Y* (gU*s ).

We define the Hecke algebra on Y*(U™*) as the Z-algebra generated by double
cosets U*gU*, for all elements g € ¢. One recovers the action given by one such
operator on the cohomology of the corresponding Hilbert modular surface as fol-
lows. Let H,K C G*(Ay) level subgroups and consider the double coset HgK. It

defines the following maps
Y*(g 'HgNK) —*— y*(HNgKg™")
In |7

Y(K) Y*(H)

We choose to look at the operator HgK acting on cohomology via (p2)« o (g)«© p}.
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We can rewrite the double coset as disjoint union of right cosets

HgK — | JH-goi,
i

where the ;s are coset representatives of the quotient (g~ 'HgNK)\ K. In the case

where H = K = U*(91,91) where 90t | 91 we recall the definition of the standard

Hecke operators

* The diamond operators: for x € (0F /)™, consider any lift of x in Op " and

let (x) be the double coset of (0 Xﬂ) h

« The Frobenius maps: for x € (Z/ZN9N)*, consider any lift of x in Z* and

let o, be the double coset of (;1 0) :

* The operator R'(x): for x € F*, we write R'(x) for the double coset of the

. oo
scalar matrix ("= ).

* The operators T’(x),U’(x): for x € OF which is totally positive and square-
free, we define T’(x),U’(x) as the double coset of (: ?) in the case where x
is coprime to 1, respectively divides 1.

We denote by 7'(x),U(x),R(x) the operators given by the same double cosets

of T'(x),U’(x),R'(x), but acting on cohomology via (p1)« o (g)* o p3.

Remark 3.2.1. These Hecke operators act on the universal abelian variety over the
Hilbert modular surface as explained in [LLZ18, Remark 2.6.1], using the con-
struction given in 2.2.2.3. In particular the operator R’ (x) acts as pushforward of the

multiplication by x.

Finally, if a € OF, we can consider the inclusion H' = U*(9,0Ma) C H =
U* (9, 91). It induces a canonical projection map pry, : Y* (9, MNa) — Y*(IT,N).
Moreover, we write pry, : Y*(9,MNa) — Y* (M, N) for the map induced by the

Note that with our convention, the action on cohomology of (x) is given by the pullback of the
map induced by multiplication by (“;l 0)

x
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multiplication by <0 ?) We can rewrite the pushforward via these maps as double
cosets as follows:

(prig)«=Hid H,
(praa)« =H (Z ?)H’

3.2.1 Some computations in the Hecke algebra

From now on we assume we are in the case where the chosen prime ¢ splits in ' and
we can write £ = A4, where A, A are totally positive integers of F, that we identify
with the two prime ideals in O above / that they generate.

We now focus on the operators we are interested in. First we rename the sub-
groups consider above as follows. Consider two integral ideals M | 9t coprime to 4

and A, with M € Z. Let
* Go:=U*"(M,M)

* Gy =U"MMNL) ={yeGy:vy= (0 1) (mod A)} = {(E)) E;;) € Gy :
cp,dy —1 El-ﬁp’l}

* Goi= U (M) = {yeGo:y= () mod ()} ={ (1) %)) € Gy ez.dy —
1e A ﬁF,iL}

We had to define the “intermediate” subgroup G, since we want to decompose
the operators we are interested in using the formula £ = A1, as we will see in a
moment. Firstly we decompose the following operators as disjoint union of right

cosets. In order to choose the coset representatives for U’'(A),U’(A),T'(1),T'(A),

we fix isomorphisms
Opp)A-Opp ~LJL, Opy/A-Ops ~T/lL.

We then have
(pl’l 1)* = G?L id Gg = G}L -1d

(pris)«=Goid G, =Gy - id
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(pri,e)« = Goid Gg = (pria)«(pry 3)« = Go- id

(pra.2)« = Go (z ?)Gl —Gy- (z ?)

=60 (1)6= s ) = ()
=6 o= Lo () ()
i=0

-1
A to A to 1iM A to
T'()=6o(’, )G =G (") (1) uco- (4 1)x.
i=0

where X € Gy is given as follows: if v is a prime of F not dividing AN, X, €
GL;,(OF,) is the identity matrix. Let N be the norm of 0, fix x € Z such that

x{ =1+NkeZand (}x. Lett =Ax € Op. We then take the component of X at

At N
N 1

all primes dividing A9 to be ( ) Note that we defined an element in G because

At — N? is unit at places dividing A91 and it is equal to 1 + Nk — N? € Z.

One has a similar decomposition for U’(1) and T'(1).

Lemma 3.2.2. With the above assumptions and conventions for {, A, A, we have the

following equality of double cosets

(pri0)U'(€) =T' () (pr10)s — (A~ ")T'(A)(praa)«(pry 1)

—ATHT (A)(pria)e(pryz)s + (€ ) (prae)s.
Proof. We will only prove the following equality
T'(A)(pria)s = (pria)U'(A) = (A7) (pra)s.

The analogous equality holds replacing A with A and the proof is exactly the same.

Combining such equalities we get the one in the statement of the lemma.
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By the above decompositions of U’(1),T’(1), we find

T'(A)(pri)- = (pri2):U"(2) = Go- (%, 1) X.

Moreover, the action on cohomology of pushforward by pr,; : Y*(M,MA) —
Y*(M,M) is equal to the action of the pushforward of the map induced by mul-
tiplication by ((‘) ;L)- Fix r = Ax € O as above such that 7 is not divisible by A
and let y € O defined by y, = A~ for all places v{ A9% and y, = ¢ for all places
dividing A9 Note that y~! is a lift of A € (O /NOF)* in O} . We hence find

A7) =6o- (3,0) (,0)-

0! 0y!

Let Y = <1 0) (y °> € G(Ay), W = (l: ?)X € G(Ay). We now verify that
WY~ € G*(Ay) and that furthermore it is an element of Gy = U*(M, ). Hence
Go-Y = Gp - W and this will conclude the proof of the claimed equality. At places

v not dividing A, we have

wy = () () =id

At places v | A, we find

—1_ [t aN o) 1 N
WVYV - (N 1 )(0 M) - <t"N 1:)'

Since At =1 mod N and the determinant is a unit both in the ring of integers of F}

and of F, for v | M, we have proved wyle Go. ]

3.2.2 The Asai Euler factor

We now define the Asai Euler factor as a polynomial with coefficients in the Hecke
algebra of level U*(9,91), with the assumption 91 | 91. The reason of the term
“Asai Euler factor” is explained by the fact that its action on a Hilbert modular
eigenform gives the local factor at ¢ of the Asai L-function attached to it, as in

24.38.
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Definition 3.2.3. The Asai Euler factor P;(X) at a rational prime ¢ { 9t unramified

in F is defined as follows:

i) If Z is inert, we let

Pi(X)=(1-T(O)X +L(OR()X>)(1 - L>(O)R(0)X?).
it) If Z is split, we let

Pi(X)=1—T ()X + (T (£)* =T (¢*) — *(O)R(¢)) X*—
—2OR)T(O)X> + L4 (1*)R(¢)*x*

We define similarly the Asai Euler factor P; for the corresponding polynomial with

(x),T (x),R(x) replaced with (x~ 1), T'(x), R’ (x) respectively.

Remark 3.2.4. In the case where ¢ splits and the primes above it are narrowly
principal, so that we can write £ = A1, with 2 € &, the coefficient of X? in Py(X)

can be rewritten as
€<A>R(7L)T(Z)2 + €<5L>R(§L)T(?L)2 — 262(€>R(€),
and similarly for P;(X).

3.3 Tame norm relations for split primes (narrowly

principal)
We give the details of the proof of tame norm relations, following the strategy
sketched in [LLZ18], in the cases where ¢ splits in F' and the two primes above
it are narrowly principal.
We will state the compatibility relation under suitable projection maps for
the translated Asai—Flach classes AF M . and obtain the norm compatibility rela-
tions for AF ¢ 4, since the chosen projections at the level Y*(M,91) will translate

in norm maps at the level of the surfaces Y*(91) x uy (see the observation after
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[LLZ18, Theorem 7.1.2a]). More precisely, we consider the following morphisms:
for any m € Z>, we denote by pr, ,, the degeneracy map given by the action of the

. L)
matrix ("’0 1)

Prom Y (Mm, M) — Y*(M,N);

we also consider the canonical projection pri, coming from the inclusion

U* (M, 90) C U*(M, M)
prig: Y (M 0) = Y*(M,N).

We will prove the following result.

Theorem 3.3.1 (Cyclotomic compatibility for AF, tame case). Let M > 1, N an
integral ideal of F divisible by M and ¢ a rational prime which does not divide
Nm(N). Let a € Or/({MOF +7Z) such that it is a unit at { and suppose that {
is split in F and the primes 1,1 above it are narrowly principal. Then the push-
forward via the composition prygo pry: Y*({M,€9T) — Y* (M N) — Y*(M,N)

maps AFp i 4 10

o[(0—1)(1— (7o 2) =P (¢ o, )] - ARy e

Corollary 3.3.2. Let M > 1, N an integral ideal of F and { a rational prime which
does not divide Nm(M)M. Let a € Op/({MOF + 7Z) such that it is a unit at {
and suppose that ¢ satisfies the splitting assumption as above. Then the norm map

Y*(N) x tyge — Y* (M) X Uy sends the class AFy o 4 to

o[t 1) (1= (¢ o, 2) =P (0o, )] - AFyota-

Proof. The result follows directly from the theorem applied to the classes
AF oM IMD a5 AF M M0 0> NOticing that the pushforward map (tyr)« used in Definition

3.1.4 commutes with the Hecke operators. ]
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3.3.1 Euler system norm relations
Before getting into the proof of the theorem, we briefly explain how to deduce the
Euler system norm relations in Galois cohomology using such result.

Consider a Hilbert modular eigenform f, we can construct classes in Galois
cohomology taking a “projection” to H' (Q, (Vﬁs)*> . The construction for motivic

coefficient sheaves is very similar and is presented in § 4.8.2.

* We have (see [Hub00]) a realisation functor for continuous étale cohomology

(as defined in [Jan88]) for smooth varieties Y defined over Q
rei: Hyot(Y,Q(2)) — Hg (Y, Q,(2)).

* There is an Hochschild—Serre spectral sequence (see again [Jan88]) relating
continuous étale cohomology for varieties Y over Q with étale cohomology

of the base change over Q

EY = HP(QHY (Y, Ly(n)) = HE ™ (Yg, Lu(n)),

et

for any finite extension L,/Q,. From this, one gets a map from the kernel
of the map H.(Y,L,(n)) — Hi,(Yg,Ly(n))%¢ to H' (Q,H{ ' (Yg,Ly(n))). In
particular, for i = 3 and if Y is a surface, since Artin vanishing theorem tells
us that H, (Y6(K)g,Ly(n)) = 0 being i > dim(Y) = 2, we obtain a map, for

any finite extension L, /Q),
HS - HG (Y, Ly(2) — H' (Q Hg (Yg, Lv(2))

Applying the étale regulator and the map obtained via Hochschild—Serre for

Y =Y*(M) to the classes AFy s , we obtain elements in
H' (Q.HZ(Y*(9) xq 1)) Ln(2))) -

* We also recall (see [LLZ18, Corollary 4.4.4]) that if f is an Hilbert eigenform
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of level 91 and weight (2,2), there is a canonical Gg-equivariant map
pr HE (Y (Mg, Lo(2)) = (VA (3.3.1)

where v | p is a place of the number field generated by the Hecke eigenvalues
of f and VJ{*S is the G representation of Definition 2.4.6. Moreover for each
prime ¢ { pDisc(F /Q)Nmg q(), this intertwines the dual operator-valued
Asai Euler factor P;(X) of Definition 3.2.3 on the left-hand side with the
polynomial P**(f,X) of Definition 2.4.8 (see [LLZ18, Corollary 4.4.4]).

* Recall that, by Remark 2.1.6, for any variety X over (Q we naturally have the

following isomorphism of Gg-modules
Hy (X X Un)g,Lv(n)) = Inng(ﬂN) Hg(Xg,Ly(n)).
Moreover, by Shapiro’s lemma we have

H'(QIndg? V)= H'(Q(u).V).

)

Applying all the steps mentioned above we find, for every integer M > 1 and f as

above, a map
Tt Hinoe V() X a1, Q(2)) © L — H' (Q(r), (VFS)*).
We are then finally able to produce a collection of classes in Galois cohomology.

Definition 3.3.3. Let M > 1 be an integer and a € OF /(MO + 7). We define
fo._1 1 As\ *
Zya = 317, (AFy ma) € H (Q(a), (VF)").

Corollary 3.3.2, combined with the properties of the map (3.3.1), implies the

following result.
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Corollary 3.3.4. If M > 1 is an integer coprime to to pDisc(F /Q) Nmg /(M) and
¢ is a rational prime coprime to MpDisc(F /Q)Nmg (M) which splits in F and
such that the primes above it are trivial in the narrow class group of F, then the
following relation holds true

coresgéﬁ%) (ZZ/:J&“) = —GEQ(Gg_l)Zz/:Lm

where Q(X) € OL[X] is a polynomial congruent to det(1 —XFrobZ1 \(Vj’ﬁs(l))ltf)
modulo (£ —1).

In other words, we have proved that modulo (¢ — 1) and multiplication by oy,
the classes satisfy the tame norm relations at primes splitting in F' and such that the
primes above them are trivial in the narrow class group. In fact, this is essentially
all one needs. Working more carefully and producing similarly integral classes,
one can then get rid of the oy using [KLZ15, Lemma 7.3.2] and then lift the classes
“removing the (¢ — 1)-error term” using [KLZ15, Lemma 7.3.4], [Rub00, Lemma
IX.6.1]. All of these procedures do not modify the bottom class, i.e. one gets an

Euler system (Z{,, 2 )m for Vjﬁ“(l) with Z{ = z{ o

3.3.2 The other compatibilities in motivic cohomology

Theorem 3.3.1 shows that the classes AF M 9 q 10 the motivic cohomology of Hilbert
modular surfaces satisfy some relation when changing the cyclotomic variable M.
For the sake of completeness and since it will be useful for the proof of such theo-

rem, we state some relations satisfied by the classes when changing the level vari-

able ).

Theorem 3.3.5. Let M > 1,0 an ideal divisible by M, | a prime ideal of O and {

the rational prime lying below |.

1. Then the image of XIEMJ%LZ under pushforward along the natural projection

pri Y (M, N) — Y* (M, M) is given by

AFy 4 if € | Nmg ()

(1 — <€_1 > 6[2) AT:M.m,a otherwise.
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2. The image of the class AF M i, under pushforward along the twisted projec-
tion map pry g Y*(M,N) — Y*(M,N) is given by

0- AFy 3 (4 ift|n
o7 (1= (Y0, 2) ARy, iFCEDM

Proof. This is the trivial coefficient case of [LLZ18, Theorem 7.1.1a,Corollary
7.4.2], noticing that, thanks to Remark 3.2.1, the action of the operator R'(¢) is

trivial on motivic cohomology with trivial coefficients. [

Moreover, one also has the wild cyclotomic compatibility (which will imply
the wild Euler system norm relations), i.e. the classes satisfy some relation also

when changing the level by a prime that divides the conductor 1.

Theorem 3.3.6. Let M > 1, let £ be prime, and let N be an ideal of divisible by
(M. Let a € Op /(M Of +Z) and assume a is a unit at {. Recall the map pr,
Y*(IM,0t) — Y*(M, ). Then

U'(£) - AFy 4 ife|M

(Prag), (XFEM,m,a) = / _ .
(U'(f)—oy)-AFyma ifl4M

Proof. See [LLZ18, Theorem 7.1.2a], again in the trivial coefficient case. O]

3.3.3 Proof of Theorem 3.3.1

Let £ be as in Theorem 3.3.1 and write [ = (1),1 = (1) for A, totally positive
elements such that A4 = /.
In order to prove Theorem 3.3.1 we will need the following result, which is the

translation of Theorem 7.5.1 of [LLZ18] for motivic classes and j = 0.

Theorem 3.3.7. Let a € Op/(MOF +7) and £, A, A as above. Assume that A {
M, A 1 N. Then we have

(PFZJ)*AVFM,MJ'I@ = GZI[T/(Z) - Gg_lM_l)T/(M] “AFy o a4
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One also has the analogous equality for (pr, 1)*1@ M it SWitching the roles of A
and A.

Proof. Letd' € OF. We denote by 1,/ ; and 1, ; the maps obtained by the composi-
tion

tya  Y(M,NO) < Y*(M,NA) =5 Y*(M,MA),
Lyt Y(M,N) < Y*(M,0) <% Y*(M,N).

The proof follows the line of [LLZ15, Lemma A.2.1]. We will divide it in
three steps. Recall the congruence subgroups U*(M,9(A)),U*(M(A),MN) and
Ug(M,N(¢)),Ug(M(£),N) introduced in Definition 2.2.6. The idea, following

[Kat04], is to consider
Y(M,NC) = Y (M,N(0)) 25 Y (M(£),N) — Y (M,N),

where @y : Y (M,N(¢)) = Y (M(£),N) is the isomorphism of [Kat04, § 2.8], given on
complex points by multiplication by £. We write 1, (3), L, ) for the maps obtained

as follows

e Y (MUN(E) = Y (M, (L)) % Y (M, N(L)),

El

by ) 1Y (M(0),N) = Y*(M(L),90) =% v*(M(1), 7).

Finally, recall that, following our convention, if A {91 the action of the Hecke oper-
ator T'(1) is given by ( Pryz)«o(pry )", where pr, 7 is the natural projection map

in the following diagram

Y*(M(A),MN) —=— Y*(M,MN())

Pry;
lpr1 3 \ ln‘l 7

and pr, 3 is the composition of the horizontal isomorphism given by multiplication

by (Z;l ?) and the natural projection map on the right. We will denote by 7, 5 the
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following map

7,5 V(M M) Q) Y*(M(A), M) A v (i, o),

where the first map is the inverse of the isomorphism above. We will use the analo-

gous notation for the prime A.

Step 1. First of all we consider the commutative diagrams

Y(M,NO) —“* 5 y*(M,0)  Y*(M,9) —22 s v (M, )
prl l lﬁr \ EZAT
Y(MN(0)) =2 y*(M,:M(1)) ),

where pr and pr are the natural projection maps. Hence we have (pr ;L)*ﬁ: MANa =
(M) (ta,2))« P (Y (M,NC), 80,1 /n¢)- Following [Kat04, Lemma 2.12 and p.132],

one can show that

®;(80,1/N) it ¢ |N
Pr8o.1/Ne =

®;(80,1/N) - (80,571/1\/)_1 if £ N,

where we denoted by g( ;-1 /N the Siegel unit go g, pulled back via the natural map
Y(M,N(£)) — Y (M,N), where f3 is the unique element of 37 /Z such that £8 = ;
Similarly, the Siegel unit gy 1y is seen as an element of O(Y (M(£),N))* via the

pullback of Y (M (¢),N) — Y (M,N).

By our assumptions, £ {1, hence we find (prz’,l)*A\I/:M’,lmﬂ =

(72,2) (1a,2) )« (Y (M, N(€)), @7 (80,1/n)) = (2,2) (1,2 )« (¥ (M, N(€)) 80,41 /)

Step 2. We now want to compute (¥ ) := (7 3 )« (la7(,1))* (Y(M,N(0)),0; (gOJ/N)).
We consider the map f : Y*(M, (L)) — Y*(M(A),N) induced by multiplication
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by . We have the following commutative diagram
01

a,(A

Y(M,N(0) <25 y+(M,M(1)

“’”l . il \

l’a.
Y(M(0),N) —“Ps y=(M(R), ) 25 v (m,m),

where pr, 5 is given by the action of (F 0). Hence we have, combining this with
y 0 1

Step 1 and using the fact that ¢y is an isomorphism,

(36) = (Bry 1)+ (g (1) (Y (M(E).N), 80,1 ).

Next we consider the commutative diagram

~

Y(M(0),N) & v+ (m(R),9N)
.
Y(M,N) —=— Y*(M, M),

where the vertical maps are the natural projections. Reasoning as in [LLZ14,
Lemma 2.4.5], one can show that (pr; )" © (1a,1)« is equal to the pullback under
the first vertical map composed with (i, @ )) Using this and the above equality,

we get

(%) = (Pry2)«(Pry 3)" (a1 (Y (M,N)), (La,1)<80,1/N)

(Pry3)«(Pry )L) AFM’ﬁéa =T'(2) “AFy 0 0a-

)

Since ¢ 1 N, we have that E:M’mja = G[l ~KIEM7m7a, thanks to Proposition 3.1.8.

Hence we get the first term in the claimed equation.

Step 3. We are now left with computing (#) := (7,2 )+(14,(2))« (Y (M, N(£)), 80,41 /n)-
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The commutative diagram we are using this time is the following

Y(M,N(0) <%y y*(M,m(1))

| Jo

Y(M,N) —“— ¥*(M, M),

where again the vertical arrows are the natural projections. We use this commutative

square as above, applying a result like [LLZ14, Lemma 2.4.5]. Hence we get

(#) = (m2,2)+(1,2)" (101 (Y (M,N)), (10,1)+80,6-1/n)

We have, using Proposition 2.1.14(1), (14,1 (Y (M,N)), (14,1)+80¢-1/n) = <x: x01> :
(14,1 (Y(M,N)), (ta,1)+80,1 /), Where we chose x € 7 to be a lift of £ € (Z/NZ)*.
We have

(t0d (Y (M,N)), (t01)-g0.00 ) = (1, 1)) - AFwsna, (3.3.2)

0!

(OF/M)™ and <X: (fl>* = (¢"")o, %, we find

Using the equalities (75 2 )«(7; 2)* (’ °> =T'(1), where t € O is a lift of A €

(m2,2) (712)" (0 °) =0, (A" HT'(2), (3.3.3)
Combining (3.3.2) and (3.3.3), we find
(#) =0, 2 (A" )T'(A)- AFyma

Combining this result with the ones of the previous steps we proved the statement.

]

We now have all the ingredients for proving Theorem 3.3.1.

Proof of Theorem 3.3.1. We need to compute (prLg)*((ﬁr275)*(glagM7m7a)). By

Theorem 3.3.6, this class is equal to

(prie)«(U'(£) — GE)(A\I/:M,E‘)T@)'
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Applying Lemma 3.2.2, we can rewrite the operator acting on AF M, (Na S

(T'(0) = 60)(prie)s — (A™H T (A)(prop)s(pry 7)s

—(ATHT () (pria)«(pryz)s + (€ 1) (prae)s.

In order to compute the image of XIEM,gm,a under (pry )« and (pry )« we apply
Theorem 3.3.5.1 and 3.3.5.2 respectively. The remaining terms can be computed
applying Theorem 3.3.7 combined again with Theorem 3.3.5.1. One then finds that
the Hecke polynomial obtained is equal to the one claimed in the theorem, using the

explicit description of P;(X) provided in Definition 3.2.3 and Remark 3.2.4. O



Chapter 4

Asai-Flach classes norm relations by
means of local smooth representation

theory

This chapter is devoted to the proof of norm relations for Asai—Flach classes, re-
moving the assumption for split primes introduced in Chapter 3. We will work with
classes in the motivic cohomology of the Hilbert modular surface with coefficients
in the sheaves of § 2.3.2. In the case of trivial coefficients we recover the classes of
Chapter 3. To achieve a proof of norm relations for all inert and split primes, one
needs to change completely the strategy: following ideas of [LSZ20a], we re-define
the motivic classes using a representation theoretic language and prove some result
using local smooth representation theory to deduce norm relations. The content of

this chapter appeared in [Gro20].

4.1 Structure of the chapter

Let F be a real quadratic field as above and consider the embedding of algebraic
groups over Q

H:=GL, — G:= ResF/@GLz. 4.1.1)

We will be working with representations IT of GLy(Af, f), where Ar ; denotes the
finite adeles over F, which are the finite part of automorphic representations of

GL, r. Equivalently we can view IT as a representation of G(A f), where A ¢ are the
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finite adeles over Q. At every place ¢ we have a representation of G(Qy), which,

depending on ¢ has the following shape:

« if ¢ is inert and hence G(Q,) = GL,(F;) where F; is an unramified quadratic

extension of (g, the representation is I'ly;

e if £ =v; -y is split and hence G(Qy) ~ GL,(Qy) x GL,(Qy), the representa-
tion is I1,, ®II,,.

In order to (re)define the Euler system classes, we define a special map .o/ .% lfnl;tj

for k,k' > 0 integers and 0 < j < min(k, k') with values in W = H} .,(Yg, 2(2)),
where Y;; is the Shimura variety associated to G and & is a motivic sheaf depending
on k,k', j (cfr. § 2.3.2). Such map will be of “global nature”, more precisely it is a
map

A Fys) S (D1 Q) @ A (G(Ay),Q) — Hio (Y6, 2(2))

satisfying some conditions of H(A) x G(Ay)-equivariance. Here .7 (A%,Q) de-
notes the space of Schwartz functions on A and J#(G(A),Q) the Hecke algebra
over G(Ay). The Asai—Flach classes will be defined as images via 7. % ]r;];t’J

certain elements in .’ (A}, Q)@ (G(Ar),Q). In §4.6 we recall the definition of

Eisenstein classes as H (A y)-equivariant maps
S (AF,Q) — Hyo(Yu, TSym* %5 (&6)(1)).

In particular if k = 0 and ¢ = ch((a,b) + NZ) for some N >, a,b € Q*> — NZ?, then
8¢ = 8a/N b/ the Siegel unit of Definition 2.1.11.

The global map &7 Fr t Jis defined in §4.7 using the Eisenstein classes map
and the pushforward in motivic cohomology induced by (4.1.1), as in (2.3.2). Prov-
ing norm relations (in motivic cohomology) will turn out to be equivalent to proving

relations of such classes locally at a certain prime /, i.e. we will be looking at a map

(7 Fn)e: 7 (QF,Q) @ H(G(Qr),Q) — Hio (Y6, 2(2)).

While we will be able to prove p-direction norm relations already in motivic coho-
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mology, in order to prove “tame norm relations” we will have strong assumptions on
the target of such map. We will have to apply the étale regulator and Hochschild—
Serre spectral sequence to pass to Galois cohomology and finally take the projection
to an automorphic representation of G(As) as above (see § 4.8.2). The local com-
ponents IT, at a “good prime” v of F will be an irreducible spherical principal series
representation gy, (s, (x,v), for x, w unramified characters of F,“. Hence we will

need to work and prove results for maps

: ' if ¢ is inert,
3:.7(Q},C)0 #(G) — 0 = GLa(r) (2, V)

6L, @) (X1, ¥1) ®IgL, (@) (X2, W2)  if £ splits,

where, by abuse of notation, we denoted by .5#(G) the Hecke algebra over G(Qy).

The first sections of the chapter are devoted to the study of these local repre-
sentations. First we recall in §4.2 some useful tools to work with representations
of GL, over a local field. The following sections, §4.3 and §4.4, should be thought
in parallel: we move to local representations of G over (Q; proving the same re-
sults for both the inert and split case, giving explicit descriptions of local L-factors

L(As(o),s) of principal series representations ¢ as above as local zeta integrals.

In §4.5, we will relate images under maps as above of elements in . (Q?,C) ®
A (G) given by Definitions 4.2.28, 4.5.16 and 4.5.17. The main results of this

section are

Proposition 4.1.1 (Proposition 4.5.19). For any 3 : .#(Q?,C) ® #(G) — W,

where W is a smooth complex representation of G(Qy) we have

7U'(0) ifm>1
(1,00 @ ch(Nyy1Kimn)) = * 3(1,00 @ ch(NKinn)) )
A U0 -1 ym=0.

Corollary 4.1.2 (Corollary 4.5.20). Let W = ¢" for ¢ a principal series represen-

tation with central character Y. Let } = |- |1/ 2+ke for T a finite order character
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and k >0, and y = | -|~1/2. Assume

XV Ao =1 (4.12)

and, if { is inert, assume the pair of characters (}, VW) is different, when restricted
to Qf, from the pair (%, ). Let 3 : (Q3,C) ® #(G) — 6" such that it factors
as 3 =3 o f, where f is the Siegel section map defined in §4.2 and

3 sy ) (X W) @ H#(G) — oV

Then we have
3(91.0® (ch(K) —ch(miK))) = 75 L(As(0),h) "' 3(o,ch(K)).

While the proposition can be proved directly for any such 3, the corollary
follows from Theorem 4.5.8. It states the analogous equality for any function
in Homgy,(q,)(I6L,(@,) (X, ¥) ® 0,C) (which is in canonical bijection with the
space of functions 3’ as above). The proof of the theorem follows from an ex-
plicit proof of the claimed equality for a specific choice of a nonzero element
3.y € Homgy, () (IoL,(q,) (X, ¥) ® 0,C) built using the local zeta integrals of
§§2,3 (see Definition 4.5.6). One then crucially needs the following multiplicity

one result in order to prove it for any 3 € Homgp,(q,) (IGLz(Q ) (x,v)®0,C).

Theorem 4.1.3 (Theorem 4.5.1, Multiplicity one). Let o, ),y satisfying (4.1.2)
and assume © satisfies in the inert case the same additional condition of the Corol-

lary. Assume that yy~—' # |-|~1. We have

dim (HomGLg(Qg) (IGLz(QE) (x; W) ® o, C)) S 1.

This theorem follows from [Pra90, Theorem 1.1] in the case where ¢ splits and
IL,(q,) (X, W) is irreducible and it is proved in Theorem 4.5.1 for the remaining

cases. We use tools of Mackey theory following the strategy used by Prasad in op.
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cit.

The motivic Asai—Flach elements defined in § 4.7 are image of elements in
5 (A}%, Q) ® #°(G(Ay)) that are described at every place in terms of the elements
considered in the above Proposition and Corollary. These classes are closely related
to the ones constructed in [LLZ18] and in the previous chapter. In fact, the bottom
class will be exactly the same. The perturbation of the embedding to obtain the other
classes will be encoded by the action of the Hecke algebra, with some modified
factors which will allow to prove norm relations without the error term divisible by
¢ — 1 appearing in [LLZ18] (and Corollary 3.3.4). More details about this can be
found in 4.7.3.

Finally in §4.8 we prove some pushforward compatibilities of such motivic
classes (Theorem 4.8.1 and 4.8.2, corresponding to Theorem 3.3.5 and 3.3.6) using
the local result given by the above Proposition. We then use these classes to find
elements in Galois cohomology of the Asai representation of a Hilbert cuspidal
eigenform and prove Euler system norm relations (Theorem 4.8.11 and 4.8.12);
vertical norm relations follow from the p-direction compatibility of motivic classes,

while tame norm relations rely on the local result of the above Corollary.

4.2 Local representation theory for GL,

In this section we recall the standard tools of local representation theory that will be

useful later in the proof of norm relations. We follow [Bum97, Chapter 4].

We let E be a non-Archimedean local field and denote by &', p, @ respectively
the ring of integers in E, the maximal ideal and a fixed uniformiser of p. Let |- | be
the norm and ¢ such that |@| = ¢~'. We also fix an Haar measure dx on E and d*x
on E* such that [,dx =1, [;«dx* = 1. For a smooth character y of E* we define

its local L—factor

1= ==l if gy =1

1 otherwise.
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4.2.1 Induced representations

We recall here some basics about induced representations of totally disconnected
topological groups. See for example [BZ76, §§2.21-2.29]. Let X be a group as

above with a right Haar measure dr on X and a left Haar measure dj .

Definition 4.2.1. The modular quasicharacter 8x of X is defined by dg(x) =
Ox (x)dr(x). If 8y = 1, X is said to be unimodular.

A trivial example of unimodular group is any abelian group. A less trivial
example is X = GL,(E). A group which is not unimodular is the Borel subgroup B

of GL,(E). For n = 2, its modular quasicharacter is given by

5( (1)) = 14

ISWESY

Assume now X is locally compact. Consider Y a closed subgroup of X. We
have a restriction functor from the category of smooth representations of X to
smooth representations of Y. This functor has a left and a right adjoint, given by

induction and compact induction.

Definition 4.2.2. Let (V,7) be a smooth representation of ¥. We denote by Indj ©

the space of smooth functions f : X — V satisfying the following condition
~1/2 1/2
fOx) =6y ""(v)8 " (y)T(y)f(x) forevery x e X,y €Y.

We denote by c-Indf () the subspace of Ind} T consisting of functions which in ad-
dition are compactly supported modulo Y. This coincides with Ind (7) when X /Y
is compact. These are X-representations with action of X given by right multiplica-

tion.

Theorem 4.2.3 (Frobenius reciprocity). Let (W, o) be a smooth representation of
X and (V, ) a smooth representation of Y. denote by ()" the smooth dual of a

representation. We then have the following isomorphisms:

Homy (o, Ind} 7) ~ Homy (o}y, 5;/25};1/21);
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Homx(c—Ind))f T, Gv) ~ Homy(5y_l/25;1(/277 (G|Y)v)-

If X is a totally disconnected locally compact algebraic group, Y is a closed
subgroup and (V, ) is a finite dimensional complex smooth representation of Y,
we can realise induced representations as sections of a complex vector bundle %
(an /-sheaf in the notation of [BZ76, 1.13]) over X /Y with fibres V. Let % be the

quotient space of X x V by the equivalence relation given by
1/2, \a—1/2
(x,v) ~ (x3, 6,/ " (»)6y "“(y)T(y)v) forxeX,yeY,veV.

This defines a complex vector bundle over X /Y, with fibres isomorphic to V, in the
sense of [BZ76, 1.13, 2.23]. Moreover, writing I'(X /Y, %) for the smooth sections

of B and T'.(X /Y, %) for the compactly supported smooth sections, we have
[(X/Y, %) =Ind} (1) and T.(X/Y,%)=c-Ind} (7).

We now state a general lemma about compactly supported smooth sections of line
bundles on totally disconnected locally compact algebraic groups (see for example

[Pra90, Lemma 5.1]).

Lemma 4.2.4. Let X be a totally disconnected locally compact algebraic group, Z

a closed subgroup and B a line bundle over X. Then we have an exact sequence
0—-Tc(X—Z,Bx_z) = Te(X,B) = Te(Z,B)z) — 0.

We now apply this lemma in a particular case and find an exact sequence
of induced representations that will be useful later. Let H,J be closed subgroups
of a totally disconnected locally compact algebraic group G and 7 a smooth one-
dimensional representation of J. Assume that the quotient H\G/J has two elements.
This means that the action of H on the space G/J has two orbits, one open and one
closed. We can write these two orbits as H/H;,H /H,, where H; = Staby (1-J) and

H, = Staby (€ -J), where € € G such that € -J is in the open orbit. We can compute
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these subgroups as follows
Hi=HNJ, Ho=Hne 'Je.

Applying the above lemma for Z = H/H;,X — Z = H/H, and normalising appro-

priately one finds an exact sequence of H-modules

0 — c-Indjy, 7 — (c-Ind§ 7)y — c-Indfj 71 — O, (4.2.1)

512, 57172

where 7; = 0, g, - T, and T2 is a representation of H; given by

o (h) = 8, (ehe )8, * (h)t(ehe ™).

4.2.2 Principal series representations

Definition 4.2.5. Let H = GL,(E) and &, y two quasicharacters of E*. We define

a space of functions on H as follows

1/2

(W) = {f - H = Csmooth < £((22) -h) = 4" x(@)w(a) £ ()

We will denote Iy (x, ) simply as I(), ¥); notice that this is the space given
by the normalised induction from the Borel subgroup B(E) of GLy(E) (consisting
of upper triangular matrices). We see I()x,y) as a GLy(E)-representation letting

GL;(E) act by right translation, i.e. for g € GL,(E)

g f(h) = f(hg) for every f € I(x,y),h € GLy(E).

In other words letting 7 be the one dimensional representation of B(E) given by

7( (Z Z)) = x(a)y(d), we have I(x, y) = Indg(ngfE) T

Definition 4.2.6. The GL,(E)-representations I(),y), for x, ¥ quasicharacters of

E*, are called principal series representations.

To characterise such representations, we recall the definition of the intertwin-
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ing operator. Fix ), ¥ and write them as
x=1-1"&, y=|[17&,

where s; € C and &; are unitary characters. Let f € I(x,y). We write, for h €
GLy(E),
M) = [ £ovme- ),
F

0 -1 1 x
where w = (1 0) and m, = (O 1)'
The following proposition determines when this integral makes sense and in

which space M f will be defined.

Proposition 4.2.7. [Bum97, Proposition 4.5.6]. If Re(s| —s2) > 0 then the above

integral is absolute convergent and it defines a nonzero intertwining map

M:I(x,v) =1y, x)
f—=Mf.

In the case where Re(s; — s3) < 0 we clearly have an analogous operator M
obtained by switching ¥ and y. The procedure for defining such an operator in
the case where Re(s; — s2) = 0 uses flar sections and the fact that we can write
GL,(E) = B(E) - K, where K = GL,(0) (known as Iwasawa decomposition, see
[Bum97, Proposition 4.5.2]). Indeed one starts with noticing that f € I(},y) is

uniquely determined by its restriction to K, which satisfies

F(;0) -0 =& @& F ),

fora,d € 0*,b € OF and k € K. We denote by V; the space of smooth functions on
K satisfying this condition, having fixed &;,&;. Then for any s1,s, € C and f; € Vy
there exists a unique extension of fj to an element f;, 5, in Vs, 5, :=1(|-[*1&1,]-*2&2).
Fixing fo, the function

(51,52) — fs;.500 (4.2.2)
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is called a flat section. We then have

Proposition 4.2.8. [Bum97, Proposition4.5.7]. Fix fy € Vy. For a fixed h € GL,(E)
the integral M f;, 5,(h) defined as above for Re(s; —s2) > 0 has analytic continua-

tion to all sy,sy where ¥ # Y. We hence have defined an intertwining operator

M (- [18r [ [282) = I(]- 262, |- [ 61).

We have the following theorem characterising principal series representations.

Theorem 4.2.9. [Bum97, Theorem 4.5.1 and 4.5.2]. Let ), W be quasicharacters of
E*. Then I(), ) is an irreducible GL,(E)-representation except in the following

two cases

(i) if xw=' = |-|7\, then I(), w) has a one-dimensional invariant subspace and

the quotient representation is irreducible;

, then I(x,y) has an irreducible codimension one invariant

(ii) if xy~' =1

subspace.

If I(x,y) is irreducible, then it is isomorphic to I(y,x) via the intertwining op-
erator M. Moreover if we have two such representations, for quasicharacters
21, W1, X2, W2, and Homgy, gy (I(X1, ¥1),1(X2, W2)) is non zero then either x1 = X2
and Y = Y or X1 = Y and Y1 = .

Another tool we need to introduce is a pairing on I (), y) x I(x ', w~!) which
identifies I(y !, w~!) with the smooth dual of I(), y). See [Bum97, Proposition
4.5.5]. The pairing is defined by an integral as follows

Definition/Proposition 4.2.10. The following integral defines a perfect pairing

() I w) xI(x~!

) —=C

i fo) = / AR f2(h)dh,

GL,(0)

forevery fi € I(x.v), L €1(x ',y 1).
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4.2.3 Whittaker models

Let W be a fixed nontrivial additive character of E.

Definition 4.2.11. Let V be a smooth representations of GL,(E). A Whittaker

functional on 'V is a linear functional A : V — C satisfying
A(my-v) =¥(x)A(v),

for every x € F,v € V, where as above m, = (; T)

Proposition 4.2.12. [Bum97, Proposition 4.5.4]. The dimension of the space of

Whittaker functionals for the representation 1(), V) is exactly 1.

We have an explicit example of a Whittaker functional u for ()}, ). The
above proposition tells us that every other Whittaker functional for this representa-

tion is scalar multiple of u.

Definition 4.2.13. We define u : I(x,y) — C by

B = [ £Ovm)® ().

where w is as defined in the previous section.

Remark 4.2.14. With the above notation, this integral converges if Re(s; —s;) > 0,
but we can proceed with an analytic continuation to every sy, s, using flat sections

as above.

Definition 4.2.15. The Whittaker model of (), ) is defined to be the function
W:f— (Wf ch—=uh-f)= / f(w~mx-h)‘P(—x)dx)
F

It satisfies W (im, - <0 O) h) =¥(x)-xy(z) Wr(h).

We can associate to every Whittaker functional a Whittaker model as in the
previous definition. The dimension one proposition tells us that they differ by a

scalar.
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Remark 4.2.16. One similarly defines a Whittaker model for every (V, ) smooth
representation of GLy(E). For any Whittaker functional A, one lets Wy, : vi— (W),
h+ A(h-v)). The image of W, defines a subspace of the space of functions A on
GL,(E), satisfying A(my-h) = W(x) - A(h). The group GL,(E) acts naturally by
right translation on this space, and the image of W) is invariant for this action.
Such image is isomorphic as GL, (E)-representation to (V, ) and indeed provides

a “concrete” model for (V, 7).

Lemma 4.2.17. For the Whittaker model of I(}, y) we have

0d

Yyt (12)) =2 by xw@) - wi (7).

Proof. This is straightforward rewriting

GO () =ma (00) (00)
and using Wf(md—lby . <0{ Z) : (di(lﬂy ?)) =Y(d 'by)- xy(d) Wi ( <f;uy ?)) u

4.2.4 Spherical representations
Let (V,m) an irreducible admissible representation of GL;(E). One can consider
the subspace V2(9) of vectors fixed by the action of GL,(0). This is at most one

dimensional (see [Bum97, Theorem 4.6.2]).

Definition 4.2.18. An irreducible admissible representation (V,7) of GL,(E) is

called spherical if it contains a GL, (&) —fixed vector.

Remark 4.2.19. The reason for which we are interested in spherical representations
is that automorphic representations of GL, decompose into a restricted product of

local representations and these are all spherical outside a finite set of places.

Example 4.2.20 (Principal series representations). The representation I(, y) with
X, W unramified and yy # | - |*! is spherical. To see this, we define the normalised

spherical vector @ as function on GL;(E) by

0o(h) = @o(b k) := |a/d|" % (a)w(d), where b= (;;),keK:GLz(ﬁ).
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To write h € GL,(E) as b -k, we use again Iwasawa decomposition. It is clear by the
definition that this function is fixed by K. We check that it is well defined and that
it is an element of I(, w). Suppose that bk = 'k’ for b = (g d) b= (’; d)k €K =
GL,(0). Then we have b = b'u withu € KNB(E) i.e. u= <0 v) with x,y € 0.
Since x(x) = w(y) =1 and |x| = |y| = 1, we find @ (bk) = @o(b'k’). To check that
this defines an element of I(, y) we compute @y(b'h) = @(b'bk), where as before
h=bkb=(::).b'= () k€K =GLa(6). Hence

o(B'n) = ol (% ,,) k) = lad/dd'|' Py (ad Y(dd') = | [d'| "1 (a' )y (d ) go(h).

It turns out that this example is enough to determine every spherical represen-

tation (of dimension greater than 1).

Theorem 4.2.21. [Bum97, Theorem 4.6.4]. Let (V,x) be a spherical representation
of GLy(E) of dimension greater than 1. Then T is a spherical principal series

representation.

Remark 4.2.22. More precisely, a spherical representation 7 will be isomorphic to

Iy (x, ), where x, v are the unramified quasicharacters of E* determined by

and o, B are the roots of the polynomial X2 — g~'/2AX + u, where A, u are the
eigenvalues of T'(p),R(p) on the one-dimensional space of spherical vectors of V.
Indeed the Hecke algebra of locally constant compactly supported complex valued
functions on GL;(E) acts on (V,x) via the formula & -v =[5, (g5 (8)(7(g)v)dg
(see Definition 4.3.1). The action of the subalgebra of GL,(&)-biequivariant func-

()

tions preserves the one-dimensional space VO2(9) In particular we can consider

the eigenvalues for the action on spherical vectors of the operators
T() :=ch(GLa(0) (1) GLa(0), R(p) i=ch(GLa(0) (1) GLa(0)).

We now want to characterise the Whittaker model of Definition 4.2.13 for ¢y €
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I(x,y) as in the above example. First we let

o:=x(®), B:=vy®@).

We have the following result, that will be extremely helpful later. We write Wy :=
Wo,-

Theorem 4.2.23. [Bum97, Theorem 4.6.5]. Let o, B as above. Then for anyy € E*,
let m := ord(y). We have

n-qtap (1) =1 el

7m/2 am+l 7ﬁm+l

q —a—p— Ym=0

We want to work with a Whittaker model % such that for W% ( ((‘) ?)) =1if
yeo”.

Definition 4.2.24. The normalised Whittaker model of 1(),y) is defined by (1 —
g 'aB~1H~1.Ww, for o, B as above.

4.2.5 Siegel sections

This section contains exactly the same results and definitions of [L.SZ20a, §3.2].

We report them for the sake of completeness and refer to loc. cit. for the proofs.

Definition 4.2.25. Let .% (Q%,(C) be the space of Schwartz functions on Q,%. For

oS (Q%, C), we write ¢ for its Fourier transform, i.e.
60 = [ [ erlaw—yu)6 (w.v)du dv
Qe JQ
where e/ is the standard additive character on F = QQy, mapping ¢~" to exp(2mwi /(™).

In the first part of [LSZ20a, Proposition 3.2.2], the authors define a map from
(Q?,C) to In(x, y) for x,y characters of Q using explicit integrals. With the
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same notation we write

Z(Q7,C) = In(x, v)

¢ = f¢7%7u/

Proposition 4.2.26. The above mentioned map satisfies
fg~¢7x,w(h) = X(detg)il ‘ detg|*1/2f¢,x,w(hg),

Fip gy = W(detg) ™" |detg| "2 5 (hg).

In particular if w = | -|~'/2 and x is unramified, then the map

Z(Q1,C) = In(x. )

¢ = F¢’x’w = fé»%ﬂlf
is H(Qy)-equivariant.

Proposition 4.2.27. With notation as above, we have

E\yY/x
M(fo.v) = %'ﬁﬁ,%x’

where (/) is the local e-factor (equal to 1 if W/ y is unramified).

We now define some special Schwartz function that will be useful later.
Definition 4.2.28. For integers 1 > 0 we define ¢, € . (Q?,C) as follows

e fort =0, ¢9 := ch(Zy) ch(Zy),

* fort >0, ¢ :=ch({'Zy)ch(Z}).

This functions are preserved by the action of

Kuo(l') == { (j j) € H(Zy): c=0mod £'}.
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Lemma 4.2.29. Let x,y be unramified characters. The function fg, y y is sup-
ported on B(Q)Ky o(¢") and

1 ift =0
Jooxw(1) =
Lixy ', D)7 ift>1.

Definition 4.2.30. For integers ¢ > 1 we define ¢, € . (Q7,C) to be

ch(¢'Z¢)ch(1+ ¢'Zy). This function is preserved by the action of

K () = {y € H(Zy) : y = (; ’;) mod £'1.

4.3 Zeta integrals for G(Q;) = GL,(F;) (inert prime

case)

Let E be an unramified quadratic extension of ;. We will work with the represen-
tation o = I(x, ¥) of G = GL,(E). We denote by K the subgroup GL, (&), where

O is the ring of integers of E.

4.3.1 Action of the Hecke algebra on Whittaker model

First we recall the definition of Hecke algebra acting on ©.

Definition 4.3.1. We denote by 77 (G) the Hecke algebra of locally constant com-
pactly supported C-valued functions on G = GL,(E). It is an algebra under convo-

lution, defined by
0% 02(8) = [ on(gh™)oa(m)a,

for @1, ¢, € 7 (G). Moreover we regard o as left .7(G)- module via

¢-f:/G¢(g)(g-f)dg-

Lemma 4.3.2. We have

g1 (0 (g2-)=90(g ' (—)gx") f.
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Example 4.3.3 (The operator U (¢)). We define U (¢) € 7#(G) to be

U(g) = WC}](K, . <é ?) 'K/),

where K’ is any subgroup of K contained in {ye K : y= ( ) mod ¢} and contain-
0
1

> - K" as union of left

01
ing the subgroup of unipotent matrices. We can write K’ - (g

cosets

k(%) k) =1r ;) K

veJ

where J is a set of representatives for the left quotient ( (S ?) K’ (l;] ?) NK')\K'. We
claim that we can take J = { ((1) 1) }ue(ﬁ /ee)- Indeed the subgroup for which we are

b
d

taking the quotient is the subgroup K” of matrices of (“ ) € K’ such that » = 0 mod
¢. The matrices considered are clearly in distinct cosets and since for any (‘: ) ek,

b
d
d # 0 mod ¢ we can choose u € &' /{0 such that b = ud mod ¢. In other words

(- L (- 0 ()

ue(0/L6) ue(0/t0)

We will need to define an appropriate additive character of E and then work
with the normalised Whittaker model for ¢ as in Definition 4.2.24. Consider ¢, the
standard additive character on Q. Let us fix d € O such that E = Q; ® Qy(5) and

such that the trace of § is zero. We define an additive character ¥ on E letting
Y:ix— eg(TrE/Qk(B*Ix)).

We can assume v(8) = 0 since E/Qy is unramified. This character has conductor

O (see for example [RV99, Exercise 3(e), Chapter 7]).
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We describe how the action of the operator U (¢) of Example 4.3.3 modifies the
Whittaker model.

Proposition 4.3.4. Let ¢ € 0 a spherical vector. Then for any y € E*, we have

0 ifv(y) <0

or: ( (kv) ?» - 2y, ( (‘; :’)) if v(y) > 0.

Proof. We prove the result for W as in Definition 4.2.15. We can also assume ¢ = ¢y

the normalised spherical vector. By definition

Voo (1) =1 () wO-m) = T w((1) (1))

MG(ﬁE/fﬁE)

where in the second equality we used the decomposition of U(¢) as in Example

4.3.3 and the fact that ¢ is K-invariant. Now we write

So we find

Wone ()= L wouwe ((2)).

ue(0g [tOE)
If v(¢y) <0, i.e. v(y) < —1, applying Theorem 4.2.23, we find that the above

quantity is zero. If v(¢y) =0, i.e. v(y) = —1, the sum is equal to

Y Youw= )Y POU+8i)= )Y Pi)¥(S)y)

ue(0g L0F) 0<i,j<(—1 0<i,j<(—1
= Y a8 y)) en(Tr(y)) .
0<i,j<t-1

Having assumed that v(8) = 0 and having v(y) = —1, we have that at least one of the

2mift

two terms ey (Tr(871y)),ep(Tr(y)) is equal to & = exp?™/‘. Assume for example
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e(Tr(87'y)) = ¢, we can rewrite the sum as

er(Tr(y)) - ( )y Cé) =0.

0<j<t—1 0<i</—1

Finally, if v(y¢) > 0, i.e. y € Of, ¥(yu) = 1 and hence

oo (1) = War ((17))-

Hence the result. ]

4.3.2 Zeta integrals

As above fix the irreducible spherical principal series representation ¢ = I (), V),

for x, v quasicharacters of E*. Let

a:=x(), B=w()

and let ys the central character of o, i.e. Yo = xy¥. We define the local Asai

L-factor! of o to be
L(As(0),s):=[(1— ") (1= BL)(1—aBt )],
Moreover if 7 is an unramified character of @', we let
L(As(c@n),s) = [(1—an ()¢ ) (1 =) *)(1—aBn(0)*>)".

Definition 4.3.5. Let ¢ as above and 1 an unramified character of Q. For every

f € o, we define

Zom.fa) = LAs@@ ). [ Iy

o) ((00)) @

The standard L-factor of o is [(1 — a¢=2)(1 — B£72%)]"" and can be obtained by the same
integral we consider here, but integrating over y € E* with norm and measure on E rather than on
Qy. It will be clear later the reason of the name Asai L-factor.
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The following three lemmas will be very useful.

Lemma 4.3.6 (Zeta integral at the spherical vector). There exist r(6,1) € R such
that for ever f € ¢ and s € C such that Re(s) > r(o,n), the above integral is
absolutely convergent and, as function of s, lies in C[¢°,£™°|; in particular it has
analytic continuation for all s € C. Moreover, if @y is the normalised spherical

vector as above, we have
Z(Gv 77 ’ (P()as) = L(nZXGa ZS)_I

Proof. Tt is enough to check convergence and analytic continuation for f = g- @,
where g € G. The validity of these statements for such f depends only on the class
of g in N\G/G(OFk). Since representatives of this quotient are elements of the form

(g 3) , Lemma 4.2.17 implies that it suffices to look at the integral for f = ¢y.

Applying Theorem 4.2.23 (notice that in our case ¢ = ¢%), we find

/@X |y!s—1n(y)7/%<<g?)>dxy_ ¥ (61 g g %ﬁmﬂ

0 m>0
am+1 o ﬁm+1

= L X"

where X = £7°1(¢). We can manipulate the latter series and obtain

Z - am—i—l _ﬁm—i—l B 1
a-p

m>0

Z BXB)™)

m>0

1 o B B 1
T o-p <l—aX_1—BX) T (1—oX)(1—BX)

The series converges for |aX|c < 1,|BX|c < 1, that is for Re(s) > r(o,n), for
some real number depending on ¢ and 1. Substituting X = ¢~*1(¢), for s in this

region, we find

/, D0 (1)) 4y =10 - an(@e ) —-pn(oe )
= L(As(o@n),s)- (1-aBn(0?C )
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and (1 —afn(0)%0=>%) = L(xsn?,2s)" L. O

Lemma 4.3.7 (Action of U (£) on the zeta integral). If ¢y is the normalised spherical

vector as above, we have

Z(0,1,U(0)90,5) = £55(2(0,1,90,5) — L(As(c @ n),5) "]

€s+1

()[ (17 x6,2s) L(AS(G(X’n)aS)_l]

Proof. First we apply Proposition 4.3.4 and find

201,05 =Crias@em.) [ e ((01)) 4

=t tasem). [ e (1) 4

where in the second equality we used the change of variables y ~~ fy. We then

rewrite the integral in the last term as

Jo oo ()= [ e (1))@

Then we apply Theorem 4.2.23 and obtain

Jiobrmoa () 5= [ ()= [ars=1

14

Putting everything together we find Z(o,n,U (€)@, s) =

et st (b o ()45 -1)

=) (2(o,n,90.5) —L(As(c®n),5) 7).

]

Lemma 4.3.8 (Action of the Borel subgroup of GL,(Qy)). For any f € 0, a,d €

Q/, we have

Zom, (32) - £.9) =4 2oldn(a'd) - Z(o,m, £.9)
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Proof. We apply Lemma 4.2.17 together with the fact that, for our choice of ¥, we
have W(x) = 1 for every x € Q,. We find

Zom.(;.) £ = ol Liasoam).o) ™ [ b tnm) ((1,7))

~ Lol fal @ DA ) Loz () @

- |y
= xo(d)|d/al* 'n(a""'d) Z(o,n,1,s)

where in the second equality we used the change of variable y ~» d~'ay. ]

4.4 Zeta integrals for G(Q,) = GL,(Qy) x GL,(Qy)
(split prime case)

4.4.1 Whittaker models for G = GL, x GL,
Let x1, w1, X2, W be quasicharacters of QEX. We now consider a representation of

G= GLZ(QZ) X GLz(Qg).

Definition 4.4.1. For 1, w1, X2, ¥ as above, let

IG(%; V’) = IH(%lv WI) ®IH(XZ7 WZ);

ie. f€lg(x,y)is f:G— C such that

) (o =1a”

We see I(x, W) as a G-representation letting G act by right translation.

Y @@l ya(d) f(s).

/

a
d

Definition 4.4.2. The G-representations /g ( X ,i/), for x1, X2, V1, ¥» quasicharacters

of QZ are called principal series representations for G.

We need to define what is a Whittaker functional for a representation V of G,

having fixed an additive character V.

Definition 4.4.3. A Whittaker functional on V is a linear functional A : V — C
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satisfying
A(my - v) =¥(x—x)A(v),

for every x,x’ € Qg,v € V, where m, v = (my,my) = ( (l X>, (1 {> ).

01)2 \o1

We now define a Whittaker model for 6 = Ig(x, ¥), for x = (x1,22), ¥ =
(y1,¥2). We will be using Whittaker models for Iy (1, y1) and Iy(x2,¥2) as
constructed above. Recall that everything depends on the choice of the additive
character. We will consider the functionals as in Definition 4.2.13, but with differ-
ent choices of the additive character. Fix such an additive character W for which we
want to obtain a Whittaker functional for 6. We then let ¥; =W and W, =¥ (—(-)).

And write w; : I(x;, ¥;) — C where
ul(fl):/Ffl(w-mx)‘l’l(—x)dx,

Mz(fz)Z/Ffz(w'mx)‘l’z(—x)dx~

And finally let u : ¢ — C to be defined by

u(f1,f2) = m(f1) - p2(f2).

It is straightforward to see that it is a Whittaker functional for o.

Definition 4.4.4. We let W be the Whittaker model for o defined by

Wife (Wrig=(g1,82) — u(g-f))

From the definition we have, for f = f] ® f>,

Wr(g1,82) = (g1 f1) - (g2 f2)

_ (/Ffl (w'mx-g1)‘1’1(—x)dx) . (/Ffz(w.mx-gz)‘l’z(—x)dx)
=Wi s (g1) Wap(g2),

where W ¢, W, ¢, are the Whittaker models for Iy (x1, i) and Iy (X2, y») obtained
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from the functionals iy, ;.

Lemma 4.4.5. For the Whittaker model of ¢ we have

YU (6 CO)) =zet@-we (). (50).

where Xo = X1Y1X2W2 Will be called the central character of ©.

Proof. This is straightforward from Lemma 4.2.17. Indeed, by definition, the left

hand side term is equal to

and applying the lemma, this is equal to

P(d'by) - (—d"by) - x1vi(d) - xova(d) - Wi g ( ( ?>) Wa,p( ( T) )-

Definition 4.4.6. The normalised Whittaker model for ¢ is defined by
W =0-0tap H ta—rtlygHl.w

where a2 = 21(€),B = y1(£),y = 22(£), 6 = y1(0).

The definition and properties of spherical representations of H carry over to
representations of G, using the subgroup GL,(Z/) X GLy(Zy). In particular we

define the normalised spherical vector of ¢ to be

®o = Q1,09 P20,

where ;¢ is the normalised spherical vector for Iy (x;, ;) as in Example 4.2.20.
Let then
WO = W(PO'
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Theorem 4.4.7. Let, as above, a = x1(£),B = wi1(£),y = x2(¢),8 = wr({). Then
foranyy € Q/, let m := ord(y). We have

| y 0 ifm<0
7o ( (; ?)’ (0 ?)) - . am+;:gm+1 ) Y’H;:gmﬂ zf: >0

Proof. This is a corollary of Theorem 4.2.23 0

4.4.2 Action of the Hecke algebra on Whittaker model

We will now recall the definition of the Hecke algebra acting on 6 = Ig(x, V).

Definition 4.4.8. We denote by 77 (G) the Hecke algebra of locally constant com-
pactly supported C-valued functions on G. It is an algebra under convolution, de-

fined by
01%02() == [ on(gh™)oa(m)a,

for @1, > € #(G). Moreover we regard & as left 7(G)- module via
0-f = [ 9(e)(s-N)ds.
Lemma 4.4.9. We have
g (9-(g2- ) =9(er' () ") f-

Example 4.4.10 (The operator U(¢)). We define U (¢) € 77 (G) to be, essentially
(U(¢),U(¥)), i.e. the usual U(¥¢) operator on each of the GL,(Qy). More precisely

00 = sy (7). (1)) %)

* K
01

for K’ = K| x K} subgroup of GL»(Zy) x GLa(Z), with K| ,K}, C {yeK:y= ( )

mod ¢} containing the subgroup of unipotent matrices. Proceeding as in Example
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4.3.3, we can rewrite

£-(G)-60)x= U (()C):

0<u,v<(—1

- U ()

0<u,v<i—1

From now on we take W = ¢/, the standard additive character of (g, i.e. the

one mapping ¢~ " to exp(2mi/{").

We describe how the action of the operator U (¢) of Example 4.4.10 modifies
the Whittaker model.

Proposition 4.4.11. Let ¢ € 0 a spherical vector. Then for any y € QZ, we have

0 ifly| >4

Yowe (1) (1)) = e, ( ([ ?), (z o)) bl <.

01

Proof. We prove the result for the Whittacker model W. By definition

W ((01): (0)) =1 (((0). (0)) - w®-9)
= X «((CHE)CHE) o),

0<u,v<l—1

where in the second equality we used the decomposition of U (¢) as in Example

4.4.10 and the fact that ¢ is K-invariant. Now we write

(G606 6D) = (ED ) G D) =mun- (). 1))

So we find

We () ()= X wourwtmwe ((0). (22)

0<u,v<l—1

If |y¢| > 1, applying Theorem 4.4.7, we find that the above quantity is zero. Simi-
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larly if [yl = 1,i.e. ef(y) = & := €*™/¢, the sum is equal to

c- Z er(yu)es(—yv) =c- Z §'¢, " =0,

0<u,v<fl—1 0<u,v<(—1

where @ = ¢ - ¢p. Finally, if |y¢| < 1, ey(yu) = e;(—yv) = 1 for every u,v and hence

Wore ((07): (1)) = (1) (1))

Hence the result. ]

4.4.3 Zeta integrals
We fix the quasicharacters X1, W1, X2, V> such that ) %—1 # |- |ila%2‘I/2_1 #1-1*

and then fix the irreducible spherical principal series representation ¢ = Ig( X f)

as above. We define the local L-factor of ¢ to be
L(o,s):=[(1—ayt™)(1—ad™")(1—Bye=)(1 -,

where, as above, @ = x1({),8 = w1 (¢),y= x2(£),6 = y»(£). Moreover if 1 is an

unramified character of QZ , we define

Lio®n,s)=[(1—ayn(O)L=*)(1—adn(O)~)(1-Byn(O)~*)(1-Bdn()=)~".

Definition 4.4.12. Let o as above and 1 an unramified character of Q. For every

f € o, we define

Zom £ =Loens™ [ b neni (). (1)@

4

The following three useful lemmas are the analogues of Lemmas 4.3.6, 4.3.7,

4.3.8 of the previous section.

Lemma 4.4.13 (Zeta integral at the spherical vector). There exist r(c,1) € R such
that for ever f € 6 and s € C such that Re(s) > r(o,n), the above integral is

absolutely convergent and, as function of s, lies in C[¢*,£™°|; in particular it has
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analytic continuation for all s € C. Moreover, if @y is the normalised spherical

vector as above, we have

Z(o.1,90,5) = L(N°Xo,25) -

Proof. In order to prove the first statements, we reduce to compute the integral for

f = ¢, arguing as in the proof of Lemma 4.3.6. Applying Theorem 4.4.7, we find

Lo bt o (). (00)

m+1 _ pm+1 +1 _ sm+1
— Z (gs—l)—mg—mn(g)m‘ o ﬁ . v 6

m>0 (X—ﬁ ’}/—5
m+1 _ pm+1 +1 _ sm+1
m>0 (X—ﬁ ’}/_6

where X = /7°1n(¢). We can manipulate the latter series and obtain

am—l—l _ﬁm-ﬁ-l ym—f—l _ 5m+1

me' o—p y—9o

m=0
_ 1 (ay_aS_ﬁy+ﬁ3>
(a—B)(y—0)\l—ayX 1—-adX 1-ByX 1-BéX
1 ( a+ aB?y8X? — B — o?BydSx? )
oa— B \ (1= ayX)(1 - adX) (1 - ByX) (1 — BoX)

B 1—afydx?

~ (1= ayX)(1— adX)(1 - Byx)(1 - BoX)

This is a standard computation, see for example Jacquet’s refreshing exercise
[Jac72, Lemma 15.9.4]. We have conditions on the convergence giving the con-

dition Re(s) > r(o,n). Substituting X = ¢~*n(¢), we find

Lo bt o0 () () 4

= (1-2s(O)N* (O *)L(c®1n,5) = L(N*Xs,25) 'L(c®1,5).

]

Lemma 4.4.14 (Action of U (¢) on the zeta integral). If @y is the normalised spher-
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ical vector as above, we have

f‘ﬁL 1

Z<67n7U<€)(p0;S) = W[Z(@TI,(PO,S) _L(G®Tl75)71]

EHI

= W[L(WZXG,ZV)_] —L(c®n,s)""]
Proof. First we apply Proposition 4.4.11 and find

2o n.0Oes)=Lreens) [ b o () (2) 4

et oen. g [ o (1), (10)) 4

where in the second equality we used the change of variables y ~~ £y. We then

rewrite the integral in the last term as

Jo oo () ()= [ o (). ()

Then we apply Theorem 4.4.7 and obtain

/y " 76 (00 (00) @y = [,

Putting everything together we find

((1)-()ars= =

X
4

Z(on,U()go,s)
=) 'Lic®n,s)™! (/

e ((00): (1)) @ 1)

4

=0"n(0)"(2(o,n,90,5) ~L(c®n,s) 7).

Lemma 4.4.15 (Action of the Borel subgroup of GL,(Qy)). Forany f € 0, a,d €

Q/, we have

2o,((:2) (22) 19 =14 xot@n(a'a) - 2(o,m. 1.5)
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Proof. We apply Lemma 4.4.5 and find

2m (). ()

=xe(@t(oen™ [ o ((00). (7)) 4
= zollafana aoen ™ [ o0 (). ()@

— Xo(d)ld/al 'n(a\d)-Z(c, 0. f.5)

where in the second equality we used the change of variable y ~» d~'ay. ]

4.5 Towards norm relations

Let G be the algebraic group over Q defined in the introduction, i.e. G = Resg GL,,
for F real quadratic field. We will now prove some results using the zeta integrals of
the two previous sections. We will denote by o an unramified irreducible principal
series representation of G(Qy), i.e. 0 = Ig,(Q,)xGL,(Q,) (X, V) if £ splits and ¢ =
gLy (F)) (X, W) for Fy the unramified quadratic extension of Qy if ¢ is inert. We will
denote by Yo the following characters: Yo = X1 W1 X2V> in the first case and ¥s =
X in the second one. By abuse of notation, we will often write H for H(Q,) =
GL,(Qy) and denote by L(As(o),s) both the local L-factor we considered in §4.3.2
and §4.4.3, 1.e.

L(AS(0).5) = L(o,s) if £ splits and 0 = IGLZ(Q()XGLQ(Q@(17V_/)

L(As(o),s) if £isinert and 6 = I, () (X, ¥)-

We also let
a; = xi(0),Bi = wi(¢) if £ splits,

a=x),B=yl) if/ splits,
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4.5.1 Multiplicity one

We will fix o as above and another pair of unramified characters y, y satisfying

AV Xo=1.

We will moreover assume that I (), y) is either irreducible or it has an infinite

dimensional subrepresentation, i.e. yy ! #|-|7L

We will be considering the
embedding

1:H(Qp) = G(Qy).

In the split case t(h) := (h,h) € GLy(Qy) X GL2(Qy), while in the inert case 1 (h) :=
h e GLQ(Qg) C GL2<F).

Theorem 4.5.1 (Multiplicity one). Let 6, ),y as above. We assume that

(Z|@;7%QZ)7£(%7W)7(W7%) lfg is inert (*)

We then have

dim (Homgy (Iy(x,y)®0c,C)) < 1.

Proof. If ( splits and Iy (), w) is irreducible, i.e. yy~! # ||, this is Theorem 1.1
of [Pra90]. We apply it for V| = Iy(x,v),Va = Iu(x1,¥1),Vas = [u ()2, v2) (i.e.
Vo ®V3 = ). To deal with the case when )(l//*1 = |- |, which was already treated in
[HSO1], we will make use of the exact sequence (4.2.1), following, as the authors
of op. cit., the strategy of [Pra90, Proof of Theorem 1.2 Case 2]. Firstly, recall
that, by Theorem 4.2.9, the representation Iy (), ¥) has an irreducible codimension
one subrepresentation, that we denote by 7. The quotient is the one dimensional
representation of H given by a character y, where y = |- |/2y,y = |- |71/2y. We

find an exact sequence
0 — Hompy (V, ®7,V3') — Homy (Vo @Iy (%, w), V3 ) — Homy (Vo @ ,V5').

The last term in the sequence is at most one dimensional, again by Theorem 1.1 of
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[Pra90], applied for V| = m. The term in the middle is the one we are interested in
and, by Theorem 4.2.9, the first one is zero if V> ® ¥ is not isomorphic to V3V. In
this case we obtain Homg (V> @I (X, ¥), V') is one-dimensional, as desired. Let us
now treat the case Vo ® v~ V,’. We write for simplicity V =V, = Iy (X1, y1). Recall
the exact sequence (4.2.1). Let G = GL,(Qy) x GL,(Qy), J = B(Qy) x B(Qy),
H = GL,(Qy) and 7 is given by

((;2): (01)) = n@wi@z@)wd).

In this case H = B(Qy) and H, =T = { (AO' ﬁ) ,Ai € Q' } (the maximal split torus).

To show that, one can take € = (Id, (f’l >) Using the fact that 7" is unimodular and

1
0

a a v /
Swan (1), (11)) = 14111

o (1)) =141
BB (8( (Z’ D, (t' £>)3_1> =1,
we find the exact sequence of GL,(Qy)-modules

0= e-Ind % = (V& L (2. W) — I G0yl Ll -1 ™) =0,
where 7( <AO' 2)) = x1¥(M)yi1x(A2). Applying Homy (—,V3’) to the above exact

sequence, we find

0 —Homy (In(yl- vyl |71, Vs") — Homu (V @ In(x, v), V3')

— Homg (c-Indj 2 %) 2,v) — Extly (In Gy -1 warl - 171, ) — ...

Since V3V ~V®vy=1Iy(x17, V1Y), we have, from the second part of Theorem 4.2.9,
that
Homy (In (17]- [, yarl-|71),va) #0,

if and only if x| | = x1, w1 - |*1 =wyioryl|= l//l,l//1|-|’1 = x1. The only
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possible case is the latter and it would imply x;y, s |-|~!, contradicting the
irreducibility of V;. Hence, the first space in the sequence is zero which implies, by

[Pra90, Corollary 5.9], that also the Ext! is zero. We hence find

Q)

Homy (01, (In (%, ¥)) ") ~ HomH(C-Indgsz 7,V3') = Homp, (%, ((V3)jm,)")-

By assumption we have x, ! v, U= y1wy1x, hence the central characters of % and
V,/ agree. We can apply [Wal85, Lemma 9], saying that this space is at most one

dimensional.

We now prove the inert case, applying again the exact sequence (4.2.1). Let
G = GLy(Fy), where Fy is the quadratic unramified extension of Q; and choose a
Qy basis {1, a} such that a> € Q. Then let J = B(F;), H = GL,(Qy) and 7 be the

smooth representation of J given by

e ((21) = 2@¥(@).

The two orbits of the action of GL,(Qy) on GLy(Fy)/B(Fy) ~ IP};[ are the GL,(Qy)
orbit of (1:0) (essentially P(l@é) and the GL;(Qy) orbit of (1 : ¢t), which is given by
(a:b) € IP}% such that a/b & Qg,ab # 0. Writing a = xo + yoo,b = x1 +yQ, we
have

(yl %) ~(a:b) = (xoy1 —x1y0 : A(xoy1 —x1y0)) = (1 : @)

—X1 X0

and xpy; —x1y0 # 0, otherwise if y; # 0, a/b = yo/y1 € Qp. If y; =0, then x; # 0
and yo # 0. We find that the stabiliser of the closed orbit is H; = B(Qy) and, taking
€= (; ?), the stabiliser of the open one is H = { <o;b b) ,a,b € Q2 —(0,0)}. To see

that H, can be written of this form, we compute the conjugate of B(Fy) by €.

10 ab 1 0 _ a—ba b
ol 0d —a 1 - ao—ba? —dao bo—d ) °
Requiring that such matrices lie in GL,(Qy) implies that b € Qy and a = a; +

ba,d = a; — ba, for a; € Q). The group H; is a (non-split) maximal torus in
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GL,(Qy). This is again unimodular and

SB(FZ)(g (azb :)871) e 53(174)( (a—oba ,,+b;,a>) — \a—bOCHcH—bocrl —1.
We find the exact sequence of GL,(Qy)-modules

0— c-Indgsz(Qf) T— oy — IH()Z@Z , 1/7‘@;) — 0,

where %((" j)) = 7(a—bt)-Wla+br).

b

X
LetV =Iy(x, y), applying Homg (—, V") to the above exact sequence we find

L

— HomH(c-Indg;(QZ) V) — Ext}i(IH(qu; ) ‘I7|Q;)avv)) .-

Since the smooth dual of V is V¥ = Iy(x ', w~!), we have, arguing as above, that
Homp (I (%yqy > Wiy ), V") # 0,

if and only if 7o = x—l,%; =y lor Xigx = vl Vgx = x~'. Assumption

(%) implies that this is not the case, hence the above space is zero and so is Ext!. We

hence find

Homy; (0, V") ~ HomH(c—IndgzLZ(Qf) 7,V") ~ Homy, (%,(Vip,)").

By assumption we have y ly~! = (¥ - lf/)@[x, and we can again apply [Wal85,

Lemma 9], saying that this space is at most one dimensional. ]

4.5.2 A basis for Homy (I (x,v) ® 0,C)

Using the zeta integral defined above, we now want to construct an explicit nonzero

element of Hompy (Iy(x, v) ® 6,C), which by the above theorem will be a basis.

Definition 4.5.2. Let = y, for y as above. For any ¢ € o,s € C, we define a
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function z;, on H(Qy) by
ZSKP(h) = Z(67n7 l(h) Q.5+ %)a

for any h € H(Qy).

We now let, fors € C, ws :=y|-|*, x5 := x| - |*.

-1

Proposition 4.5.3. The above function defines an element zo € Iy (y; ', x5! for

every @ € 6. Moreover

Zogo(1) =L(¥, 25+ 1),

. £s+3/2

Zs7U(€)(p0(l) n0) [L(%,ZS—{— 1)_1 —L(AS(G®W)7S+ %)_1]

Proof. The first assertion is a straightforward corollary of Lemma 4.3.8 and Lemma

4.4.15. Indeed

s+1/2

(om0 ((5))e0) - 95+ 5) = |41 xo(d)m(a"d) - Z(0,m,1(h) - @5+ )

all/2. . _
= |92y (@) a g (@) ]d] -z (),

Zp( <Z ;) +h)

using Yo = y~ 'y ! and n = y. The formula for the value at @y (U (¢)¢@o respec-
tively) follows from Lemma 4.3.6 and Lemma 4.4.13 (Lemma 4.3.7 and Lemma

4.4.14 respectively). []

By definition, the map

z: 6 = In(yy )

Q= Zs0

is H-equivariant. Moreover it follows from Proposition 4.5.3 that zq is different
from zero if L(%,Zs—k 1)~!and L(As(c ®n),s+ %) ! do not both vanish at s = 0.
Notice that if ¢ is inert then L(%, 25+ 1)~ divides L(As(c®n),s + %)*1.

Lemma 4.5.4. If { splits, assume that L(%,Zs +1)"" and L(As(c ®1),5+ )

do not both vanish at s = 0. If { is inert, assume that L(%,Zs + 17! and
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L(%,2s +1)L(As(c ®n),s+3)~" do not both vanish at s = 0. Then the image

of the homomorphism zq is contained in the unique irreducible subrepresentation of
-1 5 -1
IH ( v X )

Proof. If L(%, 25+ 1)~! does not vanish, then Iy (w1, y =) is irreducible and there
is nothing to prove. Otherwise, yy~! = |-| and Iy (w~!, x~!) has a unique infinite
dimensional irreducible subrepresentation St(y) and one dimensional quotient with
action given by y(det). In the split case, we claim that if L(As(c ®n),s + %)’1
does not vanish at s = 0, the space Homp (0}, Y(det)) is zero, and, consequently,
the image of zp is contained in St(y). The proof uses the same methods as the one of

Theorem 4.5.1. With the same notation, in the split case one finds an exact sequence

0 —Homy (In (21| - |2, wawa| - |1/%), v(det)) — Homy (0|, y(det))

2(Qy)

— Homy (c-Indpy, 2% 2, y(det) — Extly (In(x120] - |2, wawal - |7V/2), v(det) — ...

Since L(As(oc® ), %)_] is not zero, then none of the characters 1 V2, X1X2, V1 X2, V1 V2
is equal to y~!|- |*1/ 2 — v. On the other hand, applying Frobenius reciprocity one
finds that the first space in the sequence is non zero if and only if ), = ¥ and
Y1y, = ¥, while the third one is non zero if and only if ¥y, = v and yi 2 = 7.
This proves the claim.

Similarly in the inert case, we have

0 %HomH(lH(fC@; Vo ), v(det)) — Homp (0, y(det))

— Homy, (c-Indjp.* %) 7, y(det)) — Extly (In (2 » Wiy )- Y(det) = ..
The assumption L(%,Zs +1)L(As(c @ 1),s+ 3)71 = (1 — 2w ()~ 1/2)(1 -
l/?l,t/(ﬁ)f“l/ 2) 0 at s = 0 and Frobenius reciprocity again imply that the first
space in the sequence is zero. The third space is at most one dimensional. If it is
zero, then we conclude as above. Otherwise, we find that also Homy (0|, y(det))

is at most one dimensional. Consider the exact sequence

0 — Homgy (0}, St(y)) — HomH(G‘H,IH(w_l,x_l)) — Homy (0}, y(det)).
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We deduce that if the last map is not zero, which in particular would imply that
the statement of the Lemma is false, then Homy (0|, St(y)) = 0. This yields a

contradiction. Indeed, consider the sequence

0 — Homg (11 (¥|qy » Wigy ), St(Y)) — Homp (01, St(y))

GL - - _
— Homy, (c-Indg, %) 2, St(y)) — Extly (I (g » Wiggy ) D) = -
By [Wal85, Lemme 9] the third space has dimension one and, as in the proof of

4.5.1, we have that the first and fourth terms are zero. ]

Unlike in the GSp4 case where temperedness considerations allow to assume
the non-vanishing of both the abelian L-factor and the one where the principal series
appears, in our setting it can actually happen that they both are zero, e.g. it is
possible that at some split primes o = Iy (x1, V1) ®IH(yx1_1 : }/I[/l_l). The following

lemma shows that in this case zg is identically zero.

Lemma 4.5.5. If the assumptions of the previous lemma are not satisfied, then 7 is

identically zero.

Proof. This follows from the explicit description of functions in the Kirillov model
of principal series representations of GL,(Qy) as recalled for example in [Jac72,
Lemma 14.3]. In the split case, the functions y — W; ¢( (; ?)) are indeed in the

Kirillov model of Iy (;, ¥;). By definition

L(As(c®@Wy),s+1/2) = L(xixy L) LOavwy L) L(vixay ' s)L(yiway ')s)

Firstly we assume that the order of vanishing of L(As(c ® y),s+1/2)~! is 2 and,

without loss of generality, we can assume x| ¥ = Wiy = 7, where y—' = |- [1/2y.

Since the order is 2, we have y; # y;, and WW( (g ?)) can be written as
FO)I + 20wy,

for some f,g; € (Qy). Hence the function Z(o, ¥, ¢; ® ¢@2,5+ 1/2) is equal to
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L(As(oc ® y),s+1/2)~! multiplied by the integral

/@X Y T O AG O+ a1 ) v () y12)

(L) )+ 2200w 0)y|?)d*
= Pi(s)L(1,5) + P2 (s)L(x1vwy ',s) + P3 (S)L(wlxw‘l,s),

where P;(s) are polynomials in £~*, ¢*. The equality follows from the description of
the L-factor L(i,s) for any quasicharacter of Q; (see [Jac72], the discussion after

Lemma 14.3). Since in our situation we have

L(As(c@y),s+1/2)" ' =L(1,5) Ly s) 'Lyixpy ', s) 7!,

the result follows. If the order of vanishing of L(As(c ®@ w),s+1/2)7 1 is 4, we
have y1 = yi and Yo = vo = yx, ! In this case

/@ Y O) A2 )+ g10)x ) () [y[?)

(O O+ g2 0 GGy Haxy
= P (s)L(1,5) + P> (s)L(1,5)* + P3(s)L(1,s)>.

Here v is the valuation of (Q; and the equality follows from what said above and
[Jac72, (14.2.1)] in the case where v or v? appears in the integral. Being L(As(0 ®
v),s+1/2)7 1 equal to L(1,s5)*, again the result follows.

Similarly, in the inert case we have that the Kirillov function y — W ( <j) ?))

can be written as

I (F0)70) + 0¥V

for f,g € .7 (F;) and | - |F, is equal to | - |> when restricted to Q. Indeed the fact that

both the L factor vanish implies that = {/ = y, where ' = |- |!/2y. Hence the
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integral in the definition of z, ¢ is
/QX VY OO Y) +80)Y0)v()d*y = Pi(s)L(1,5) +Pa(s)L(1,5)*.
4
In this case L(As(c ® y),s+1/2) = L(1,s)* and the result follows. O

We recall then the intertwining operator defined thanks to Proposition 4.2.8

and the pairing of definition 4.2.10

-1

M: IH(XSaV/s) _>IH(II/S7XS) and <_a_> :IH(WSJCS) XIH(‘/]s 7%;1> — C.

Definition/Proposition 4.5.6. For every f € Iy(x,¥), ¢ € o, we let

 lim (Y
Sy (f @) :=HMmL(5 25+ 1)(Mf;,29),

where f; € Iy (X5, W) is any polynomial section passing through f.> This gives a

well defined element 3, € Homy (I5 (X, ¥) ® o, C) which is not zero.

Proof. First of all one notices that (Mf,z,¢) = (fs,Mzs). If x,y¥,0 are as in
Lemma 4.5.5, then z; vanishes for s — 0. If x,y, 0 are as in Lemma 4.5.4, then
Zs is an element of the non-generic irreducible subrepresentation of Iy (w~!, x 1),
which is the kernel of the M operator if L(%,Zs + 1) has a pole at s = 0. Hence
in both cases the limit is well defined and depends only on f. Moreover, the first
formula of Proposition 4.5.3 implies that 3, y(f ® @) # 0, for some nice choice of
f,e.g. for f = Fy, one can see this from the computation in the proof of Theorem

4.5.8, where we show

3w (Foy @ @0) = L(xy ', 1) Vol(H(Zy)),

which is different from zero since we assumed yy ! # |-|~L. O

2Here by polynomial section passing through f we mean a function on H x C, sending (g, s)
fs(g) such that g — f(g) is in Iy (x5, ) for each s € C, s +— f;(g) lies in C[¢*,£~*] for every g and
fo = f. One constructs it as in (4.2.2).
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The following corollary is then a straightforward consequence of the above

proposition and of multiplicity one (Theorem 4.5.1).

Corollary 4.5.7. Take o,y, ) as above and assume that condition (x) holds and

that |x(0)|c # |w(€)|c. Then 34y is a basis for Homg (Ig(x, y) ® o,C).

Using this specific element of Hompy (I (), ¥) ® 6,C), we now prove a theo-
rem that will play a key role in the proof of norm relations. Having fixed yx, v, for

every ¢ € .7(Q?,C) we let, as in Proposition 4.2.26,

Fo = Fy .y = f§ 5.9 € W)

We also recall the special elements o, ¢; € .7 (Q7,C) as in Definition 4.2.28.

Theorem 4.5.8. With notation as above, we assume that (x) holds and that the

characters ),y are as follows
e x=1- |1/ 2tk .z, for T a finite order unramified character and k > 0 integers;
sy=[
Then for any 3 € Homy (Iy(x, ) ® 6,C) we have
(i) 3(Fo ® 0) = (775 (1 - %) 3(Fo @ 0);
(i1) 5(Fp, @U(0)- @0) = iy - | (1 2077 ) = LAAS(0),0)7] - 5(Fy, @ o),

where in (ii) the Hecke operator U ({) is the one of Examples 4.3.3 and 4.4.10, in

the inert and split prime case respectively.

Proof. We will prove both the statements for the specific function 3 y, which is a
basis of Homg (I (), ¥) ® 0,C).
First we notice that Fy, is the value at s = 0 of the Siegel section f(ﬁz Yo Vs We

apply Proposition 4.2.27 and find

M(fq;hXS?y/S) - L(xllj_l’ 1 - zs)_1f¢l7l’,ﬁx.¥'



4.5. Towards norm relations 127

We then apply the definition of the pairing (—, —) and get

MU 2o =Ly =297 [ o )z ()
4

=Ly =29 Yo (D [z ()
Ko(#)

For the last equality we used that fy, y. . restricted to H(Zy) is a scalar multiple of
ch(Ko(¢")). This follows from the fact that, by Lemma 4.2.29, fy, v, 4, Testricted to
H(Zy) is supported on Ky(¢") and ¢, is invariant by the action of Ko(¢'). Recall that
8- ¢o = @ for any g € G(Zy). Hence zy ¢, (h) = zs,,(1) for any h € H(Z;) and we
can continue the chain of equality writing

3(Fo, @ 0) = LY ™, 1) fopz (1) VOl (Ko(#)) - lim (L(X, 1+ 26)z, (1))

s—0
Lixy ', D)~ "Liyx ™' 1) 7 Vol(Ko(€))  ifr =1

Ly, 1)~ Vol(H(Zy)) if1 =0,

where we applied Lemma 4.2.29 for the value fy, v (1) and the first formula
of Proposition 4.5.3 to show that the limiting value is exactly equal to 1. Since

ool = [H(Z) : Ko(0)] ™' = 7L and

_ Nk — ko
Ly ' D) =L(- " ) =(1—)"

we obtain (i). We proceed similarly to get (ii), using in addition the second formula

of Proposition 4.5.3. We find

5w (Fo U(0)@o) = Vol (Ko ()L (™', 1) L{wx ™ )7 im L(Z, 1 +25)zy )y (1)

3/2 _ 15 —
= o Vol(Ko())L(xy ', 1) 1§%L(%,1+2s) 'L(¥,1429)

' (pro(l) _L(AS(G@)U)J_'_%)A)

= IVol(Ko(0))L(xy ", 1)7! [L(§,1)‘1 —L(As(ff@n),%)‘l] -

Using the formula proved above for the value 3(Fy, ® ¢p) and noticing that
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L(As(c®n),3) =L(As(c®|- |=1/2), 3) =L(As(0),0), we obtain (ii). O

Remark 4.5.9. We emphasise that, in order to prove this theorem for any 3 €

Homy (Iy(x, v) ® 0,C), we used

* O is a principal series representation for G with central character such that

XV Xo = | and (%) holds;
e %,y are in the form y = |- |2tk .1 y=]|.|71/%

e dim (Homy (Iy(x,y¥)®0,C)) = 1.

4.5.3 From Homy(t®0,C) to X(1,0")

Let 7,0 be smooth representations of H(Q,) and G(Qy) respectively. We will now
establish a bijection from the space Homy (7T ® 0,C) and the space X(7,0") of
linear maps 3 : T®c #(G) — ¢ satisfying certain properties. For the specific
choice 7 = . (@%,(C), we will prove results that are essential in the proof of the
norm relations (in motivic cohomology). In particular for ¢ an unramified principal
series representation as above, we will use the above mentioned bijection and will
be able to combine these results with Theorem 4.5.8, obtaining a result that is a key

point in the proof of tame norm relations (in Galois cohomology).

Definition 4.5.10. Let 7, o be smooth representations of H(Qy) and G(Qy) respec-
tively. We define X(7,0") to be the space of linear maps 3 : T®c #(G) — ¢,

which are H(Qy) x G(Qy)-equivariant, with the actions defined as follows:

» H(Qy) acts trivially on 0¥ and on 7® 7 (G) via
h-(v@&) = (h-v)@&h'(-)).

* G(Qy) acts naturally on 6" (which is a G(Qy)-representation) and on T ®
€ (G) via
g-(v®dg)=vas((-)g)

We now state explicitly the bijection we were mentioning above.
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Proposition 4.5.11. There is a canonical bijection between Homy (T ® 0,C) and

X(7,0V) characterised as follows

Homy (t®0,C) — X(1,06")

3— 3,

where 3(fQE)(F)=3(f®(&-F)), forevery f € 1, € H#(G) and F € ©.

Proof. We start by rewriting Lemma 4.4.9 as
(1) g (§-F)=E&(g7' (=) Fs
@ & (g-F)=6((-)g™") F;

forevery & € J7(G),F € 6,8 € G(Qy).
Firstly we check that 3 is G(Qy)-equivariant. By definition of the action on the
smooth dual of o, for every g € G(Q) and ® € 6V, g-®(—) = P(g~ - (—)). We

have

83/ RENF) =3(F08) s - F) =3 (- -F) Z3(f @ (E(H)g)-F))
=3(f@E((-)e)(F) =3(g- (f® &) (F).

Then we check that 3 is H(Qy)-equivariant, recalling that H(Qy) acts trivially

on ¢". For h € H(Q,) we have

3(h-(f@E)(F)=3((h- /)@ &N (=))F) =3((h-H@ &R (=) F))

D)@ (h-(E-F)) 2™ 5(F & - F) = 3(f 2 &)(F).

—

Hence 3 € X(1,0Y).

The fact that this defines a bijection follows from the isomorphism
Homg(c-Ind%(7),6") ~ Homy(t® ,C),

which is essentially given by Frobenius reciprocity (see [LSZ20a, Proposition
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3.8.1]). Here we denoted by c-Ind% (1) the compact induction. Using T® J#(G) =

c- Indg T, one finds

Homg(c-Ind% (1), 06Y) ~ X(1,06").

Definition 4.5.12. Let R € J7(G). we define R' € 77 (G) by R'(g) :=R(g™").

Remark 4.5.13. It is an easy computation to check that for every ® € ¢",F € o,

we have

®(R-F)=R-®(F).

Indeed one one side we have, ®(R-F) =P ([;R(g)g-Fdg) = |;R(g)P(g- F)dg,
using linearity of ®. On the other we find R' - ®(F) = [;R(g™!)g®P(F)dg =
JoR(g™H)®(g™! - F)dg. This integrals are equal since G is unimodular.

Corollary 4.5.14. Let 3 <> 3 as in the above Proposition. Let Uy < Uy be subgroups

of G, fo, f1 € Tand go,g1 € G such that

3(f1,81-F) =5(fo,80- (R-F))

for some R € #(Up\G/Uy) and for every F € 60, Then the elements 3; := 3(f;®
ch(g;U;)) € (V)Y satisfy

Z u-31 :R,'Bo < (O'V)UO.

uely /U,

Proof. Tt is clear by the definition of the action of G that 3; € (¢)Y, moreover
summing over quotient representatives gives also }.,,cy, /i, 4- 31 € (6V)%. Writing
(V)W = (6%)V, we are then left to check that both the L.H.S. and the R.H.S. take

the same value at every F € 6. Applying the Lemma above, we find

R'-30(F) =30(R-F) = 3(fo®ch(golUo))(R- F)

= 3(fo® (ch(goUo)R) - F) = Vol(Uy)3(f1,81 - F).
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In the last equality we used the assumption 3(f1,g1-F) = 3(fo0,80 (R- F)) together
with the fact that go- (R-F) =R(g, '(—))-F and

eh(gollo)«R(&) = [ ehlgolio) ()R~ )ah= [ | RO )an=Vol(Uo)R(s; '8).

where we obtained the last equality from the fact that R is in ¢ (Up\G/Up). More-

over for every u € Uy /U, we have

u-31(F) =u-3(fioch(giU1))(F) = 3(fi@ch(giUn) (' F) = (fi©ch(giUr)((—)u)-F).

We also find that

Y chleU)())F =Y [ ch(@iUn)(ew g Fdg=} [ guFdg

uely /Uy u 78101

:Z/U g1 'ng:VOI(Ul)[U() : Ul] g1 ~F:V01(U()) g1 ~F,
u 1

where we used the fact that F' is invariant by Uy > U;. The result follows using
linearity and the above expression for u- 31 (F). O
We now work in the setting where:
e We take T = 5”(@%,@);
» We replace 6" by an arbitrary smooth complex representation W of G(Qy).

We consider X(W) to be, similarly as above, the space of functions
3:.7(Q}C)2.2(G) =W

satisfying the H(Qy) x G(Qy) equivariance property with actions defined as above.

Lemma 4.5.15. Let & € 7(G) be invariant by left translation of the principal
congruence subgroup of level /T in H(Z,) for some T > 0. Then for any 3€ X(W)

the expression
1

W3(¢l,t ®&)



4.5. Towards norm relations 132

is independent of t > T, where Ky 1 ("), ¢1; are as in Definition 4.2.30.

Proof. This is the analogous of [LSZ20a, Lemma 3.9.2]. The proof carries over,
we sketch it for the sake of completeness. For any t > T we fix J a set of coset
representatives for the quotient Ky 1(¢7)/Kp 1 (¢') such that J is contained in the
principal congruence subgroup of level ¢7. We can write 017 = Ykesk- ¢1,. From
that, using H(Qy)-equivariance of 3 and the fact that & is invariant by the action of

the principal congruence subgroup of H of level /7, we obtain
Vol (Ky 1 ({7
3(0r@8) = Y3 (01, K1 8) = Nt 3 (91, 9 €).

]

Definition 4.5.16. We define 3(¢; .. ® §) to be the limiting value defined by the

above lemma.

We now define a precise choice for &, that will be used for the definition of the

Euler system classes.

Definition 4.5.17. Let m > 0 integer and a € Z,, we define n,Sf‘) €G(Q)b

(a) < (; (1))’ (0 | >) € GL(Qy) x GL2(Qy) if £ splits
nma =

18- 4

f) € GL,(F) if £ is inert.

In the second case we fix 0 € OF, such that F; = Q, ® Q/(5) as in §4.3. We will
(1)

write My, = Nm -

(@)

For n > max(m, 1) we also let K, , be the subgroup given by

{(g1,82) € GLa(Zy) x GLa(Zy) : 1,82 = (O 1)) mod ", detg;,detg, = a mod £}

{§€G(OF) g= (0 1) mod /", detg = a mod ¢}

in the split and inert case respectively. We denote by K, ,, the subgroup K,S}%
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Remark 4.5.18 (On the choice of 7n,,). The choice of these elements in G(Qy)
corresponds to the choice of the “embedding twist” in the original definition of the
Asai-Flach classes of [LLZ18] (and of Beilinson-Flach classes in [LLZ14]). The
1o
0

choice of the matrices is given by something of the form 1( ( 1 )) “twisted” by

some upper triangular matrix of G(Zy) not coming from H(Zy), i.e. something of

(1) (05)) ana (i) respectively

foray,ar € Zy/lZy,a1 # ap and a € O, /({OF, + Zy) respectively.

the form

Recall then the Hecke operator R = U (¢) in Example 4.3.3 and 4.4.10. Taking
K' = Ky, we have a decomposition as left cosets as in the mentioned examples.
We now denote by U’(¢) the element R’ (see definition 4.5.12) of the Hecke algebra

invariant (on the left and on the right) by K, ,, explicitly it is

1

vt = Vol (K )

(Kt ( (', ) Kinn) € H(Kinn\G/Kin).
Proposition 4.5.19. For any 3 € X(W), we have

Lu'(e) ifm>1
(91,00 @ ch(Nyy1Kimn)) = + 3(91,00 @ ch(NKinn)) )
A0 1) ifm=0.

Proof. First of all we notice that (similarly as in Remark 4.5.13) we have U’ ({) -
3(1.00 @ h(MmKimn)) = 3(P1 00 @ (ch(NKimn) *U(£))). We moreover apply the
decomposition of Examples 4.3.3 and 4.4.10 to find

U'(0)-3(01 m@ch(TmKonn)) = (S) Lo<uv<e-13 <¢1,oo ®ch (nm ( (g T), (é 1)> Kmn))
M Yo<ij<t—13 (‘Pl,oo ®ch (nm (f) ’*:“) Kmn>> ’

where (S) denotes the split case and (I) the inert one. In both cases we are going to

rewrite the Hecke algebra element using the invariance of K, , by Z translation.
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(S) In the first case

ma () () = (6 6)- () ()

=) (™

In this case we denote by x,, the integer v — u.

() Similarly in the second case, we write

ma () = () () = o0 (r) () -mit ™

In this case, we write x; ; = jforall 0 <i </ —1.

Now we write the above sum (both in the (S) and (I) case) as

Y 3 (00 (01) (02) -entm ™ k)

0<u,v</—1
—wmen L 3(00@ (1) (0) -ehni K

0<uy<f—1
= oK) O<WZ<4 . 13 ( (3 T) ( T) ' ( (5 T) ey ®ch(n,§f$€mx’”’)1<mvn)>)
- m ogu,vzgé— 1 . ( (i (1)) - P10 Ch(n;;flgmxwl{m’n))
= WOSMEM 3 <ch(€”+IZe (14 07,)) @ ch(n,ijjf'"x”)Km,n))
= ¥ 3(orewchmy ) K
0<u,v</—1

In the second equality we used that ¢; , is fixed by ((1) _1> , in the third equality we
used the fact that 3 is H(Qy)-equivariant and the action on the target is trivial. The
fourth one is a consequence of the definition of ¢; , and the action of H(Q,) on
Schwartz functions. For the last one one reasons as follows. Write §' = 717, x
(14¢"Zy) and S = ("1Z; x (14 £"71Z,); in particular ch(S) = @1 1. Now we

write

Stab($) = Ky 1 (™) € Stab(8') = { ( j) € H(Zy): c=0(0"),d = 1(0)}.
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We also write ¥ = { (0 L k) }0<k<g 1, which is a set of representatives for the quo-

tient Stab(S’) / Stab(S). We can then write

=Y o-ch(S)=) 001 ut1.

(IS (IS

(14+0Mxy )

It is easy to check that for every o € I, letting &, := ch(n,,., Kn.n) we have

o &y =&, Hence we find
3(ch( S/ ®§uv 23 Q1 nt1 ®§u,v>
= 23 ¢1 n+1 Ko éu,v)) — 23(¢1,n+l & gu,v)
B(Q)l,n—i—l ® éu,v)-

Hence we can write

k) L 3(hS)0h) = wmamy L 30 ©6w)

0<u,v<(—1 i 0<y</i—1

0~ 1
Vol(KH L(FTY) Z 3 (¢17n+1 X éu,v)

0<u,v<i—1

=ty <<P1 ®ch(n,§11++1€ V)Km7n)>a

0<u,v<i—1

where for the second equality we used [Ky 1 (£") : Ky 1 (€"1)] = £2.

Now we notice that

< >Tlm+ (,1 0) nr(nJ)rl

—1

Moreover for a = 1 modulo ¢"Z, ( ) € Ky, and hence

0 1

Ch(nm+1Km,n) ( <U;1 ?) (_)> = Ch( <§ ?) NMm-+1 (a;l ?)Km,n) = Ch(n,gﬁll{m,n)'
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0
1

; a’s, 7). = hence we can write
Moreover, for such a’s, we have (| 1 1.t

3(¢17m®ch(n,$1alle,n)) =3 (¢17m®0h(nm+1Km,n) ( (;l ?) (‘))) = 3(91 @ch(Nms1Kmn))

Applying what we wrote above, we get that all the terms in the sum are
equal to 3(¢1 o ® ch(Nu+1Kn,»)) and hence

U'(£) - 3(91.0 @ ch(MnKin.n)) = £+ 3(1.00 ® (M1 Kinn))

We can apply the same reasoning for all x,, ,, but for x,, , = —1 modulo ¢. For
such x,, we find ch(nl(lﬂ”"')l(o’,,) = ch(Kp,). We have exactly ¢ pairs (u,v) such
that x,, , = —1; for the remaining (> — ¢ =((£—1) terms we have <1 +0 ?) € Ko, and
we find as above 3 (¢ o ® ch(nl(Hx”"”)Ko,n)) = 3(¢1, ®@ch(niKp)). We therefore

obtain

U'(€)-3(¢10@ch(Kon)) = (£—1)3(d1.0@ch(MKop)) + 3(91 .0 @ch(Kp))

]

We now want to go back to the case where W is the smooth dual of principal
series representation and T = Iy (), ¥) in order to use the bijection of Proposition
4.5.11 and Theorem 4.5.8. First of all let K = G(Z,). We assume that the Haar mea-
sures on G(Qy) and on H(Qy) are normalised to that Vol(G(Z,)) = Vol(H (Zy)) = 1.

We also recall the Siegel section map used above

Y(@%,C) — IH(X) II])

(p = F(P’xlll = fé>%7‘l/’

that is H(Qy) equivariant if x, y are unramified.

Corollary 4.5.20. Let W = ¢V for ¢ a principal series representation with central

character Xs. Let X,y unramified characters such that

s x=|- |1/2+k’c, for T a finite order character (that may be ramified) and k > 0
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integers;
cy=|- |—1/2;
* we assume that o satisfies X - Xo = 1 and (x) holds.

Let 3 € X(0") and assume that it factors through the Siegel section map for the

above X, Vy, i.e.

7(Q2,C)® #(G) & s oV

Then we have

3(¢1,® (ch(K) —ch(n1K))) = 757L(As(5),0) ™" - 3(9o @ ch(K)),

where ¢ is as in Definition 4.2.28.

Proof. We write ¢, 1 := ch(¢{Z; x Z; ) and
Ko :=Stab((Z x ZY) = {y € H(Zy) : y = (; j) mod ¢}.

We also recall that ¢; | = ch(¢Zy x (1+/Z;)) and write Kj := Ky 1 (¢) = Stab({Z x
(14 ¢Zy)). For every o € H(Zy) C K = G(Zy), we have ¢ - ch(K) = ch(K) and

hence
3(0- 91,1 x ch(K)) = 3(0 - (¢1.1 x ch(K))) = 3(¢1,1 x ch(K)).
Applying this and writing @01 = Ysck,/k, O - 91,1, We obtain

3(¢1,0 ®ch(K)) = VOngl 3(¢1,1®ch(K)) = W 3(¢o,1 ®ch(K))

— ity 3(90.1 @ch(K)) = (£+1)3(90,1 @ ch(K)),

(4.5.1)

where in the last step we used the fact that Vol(H (Z;)) = 1 and [H(Zy) : Ko]) = £+ 1.
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Then applying the previous proposition we find, writing K¢ 1 := Ky 1,

3(9100 ®ch(MKg,1)) = 727U (€) = 1) - 3(¢1,0 ®ch(Kg,1)).

Let Kg o be the subgroup of G given by matrices congruent to <O ) modulo /.
Next we sum on both side of the last equality over representatives of K/Kg 1. On
the left hand side we obtain 3(¢; .. ® ch(n;K)). On the right hand side, writing
K/Kc1=K/Kgo-Kco/Kag,1, and using the fact that K o/ K¢,1 commutes with the

Hecke operator U’(¢), we obtain

1
1 L (U0 -1)3(¢1=®ch(Kso)).
YEK/Kgo
Moreover we can argue as before, using the fact that o - ch(K¢ ) = ch(Kg,) for
o € Ky C Kg0, we can rewrite 3(9; . ®ch(Kgp)) as (€4 1)3(¢o,1 ® ch(Kgy))-

Overall we have obtained

{+1
3(01-@chmK) = ¥ 7 (U0~ D300 @ eh(Koo))
YeK /Kg,0
{41 , +1
=71 Y rvU (6)3(‘1)0,1®Ch(KG,O))_E_—IB((PO,I@Ch(K))-
YeK/Kg o
4.5.2)
Combining (4.5.1) and (4.5.2), one obtains
3(91. @ (ch(K) —ch(mK))) = (L4 1)(1+ 747)3(¢01 @ ch(K))
(4.5.3)

— Y, 1 U031 9ch(Kep)).

YEK/Kgp

We finally use the assumption that 3 factors through the Siegel section. First
we suppose that 7 is ramified. Since both ¢y and ¢ are invariant under the action
of matrices of the form (0 d) fora,d € ZZ, *x € Zy, we get

Foo oy = X(a) - Foy 3.

and being x ramified, this implies that Fy, y = 0. Similarly Fy,, 5 v = 0 and the
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claimed equality reads 0 = 0. So we can suppose 7 unramified, so that we are
able to apply Theorem 4.5.8 (where ¢, is our ¢ ;). Using Remark 4.5.13, the two

equalities of the theorem give us
k
3(901 @eh(K)) = gy (1= o7 ) - 30 @ eh(K)),

U'(0)-3(901 @eh(Kg0)) =ty | (1= o) — L(AS(0),0)7" |- 3(9o @eh(K0).

Hence we rewrite the two terms on the right hand side of (4.5.3) as

(C+1)(1+ 715)3(¢o,1 ®ch(K)) = % (1 - %) -3(¢o ®ch(K)),

o [(1-45) - L(as(0),071] ¥ 7-3(0@ch(Kgo))

YEK /KG,0

= b [ (1= 45) ~ 1(as(0),0 '] 300 @ eh(K))

and get the claimed equality. O]

Remark 4.5.21. An easy adaptation of the arguments allows to prove analogous
results for 3 € X(oV)[h], where we denote by X(c")[h] the space of functions
3:(L(Q,0)® | |" ®#(G) — ¢V, for some positive integer s. Hence we are
twisting the action of H(Qy) on .#(Q?,C) by a power of the determinant. Note
that in the proof of Proposition 4.5.19, the the invariance of 3 by matrices of non-
invertible determinant is used only to pull out <[: ?) and hence the statement be-

comes

u(e) ifm>1
*3(01 @ ch(NnKinn))

ﬁ(g—hyl(g)_l) itm=0.

(1,00 @ch(Nyuy1Kimn)) =

Moreover, the space of maps in X(c")[h] factoring through the Siegel section for

XV Xs = 1 will now be isomorphic, via the bijection of Proposition 4.5.11, to a
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space of the form Homy (Iy (x| -|", w|-|") ® o, |det|"). Theorem 4.5.1 implies that
this space is again one dimensional, and the construction of a basis carries through
as in Section § 4.5, where in the choice of the auxiliary character in Definition 4.5.2
v is replaced by y| - |". The multiplying factor on the RHS of (ii) in Theorem 4.5.8

becomes
€l+h

T (1-45) ~L(as(o). )]

and the statement of Corollary 4.5.20 hence becomes

3(¢1,® (ch(K) —ch(n1K))) = 757L(As(0),h) " - 3(90 @ ch(K)).

Remark 4.5.22 (Towards Asai—Flach Euler system). As anticipated in the introduc-
tion, in order to (re)define the Euler system constructed in [LLZ18], we will define

KK’j
mot

a special map o7 # for k,k’ > 0 integers and 0 < j < min(k,k’) with values

inW=H3

mot

(Yg,2(2)), where Y is the Shimura variety associated to G and & is
a motivic sheaf depending on k,k’, j. Such map will be of “global nature”, more

precisely it is a map
o F o+ S (85,Q) @ H(G(Af). Q) — Hau(Y5. 7(2))

satisfying conditions of H(Af) x G(Af)-equivariance with actions defined as in
Definition 4.5.10. The Asai—Flach classes will be defined by images via &/ % fnl;tj
of very precise elements in . (A},Q) ® H(G(Ar),Q), whose local components
will be the one we considered in this section. Proving norm relations (in motivic

cohomology) will turn out to be equivalent to prove relations of such classes locally

at a certain prime ¢, i.e. we will be looking at a map
3= (o F gy 7 (QQ) @ H(G(Qy), Q) — W = Hy (Yo, 2(2)) € X(W).

In order to prove norm relations of vertical type, we will be able to apply Proposi-
tion 4.5.19. While for proving “tame norm relatitons” the input local data will be

essentially the one in Corollary 4.5.20, but we have the strong assumption on W.
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We will have to apply the étale regulator and Hochschild—Serre spectral sequence
to pass to Galois cohomology and finally take the projection to an automorphic rep-
resentation of G associated to an Hilbert modular form of weight (k + 2,k" + 2).
As anticipated in Remark 4.2.19, the local component at a “good prime” ¢ of this
representation will be a spherical principal series representation, so we will finally

be able to apply Corollary 4.5.20.

4.6 Eisenstein classes for H = GL,

We now recall which are the elements in motivic cohomology that we are actually
going to consider. This is [LSZ20a, § 7].

Write YO(A},@) Cc Y (A?-,Q) for the subspace of functions ¢ satisfying
¢(0,0) = 0. Recall the notation of § 2.3.2, where we denoted by Yy the infinite

level modular curve and we defined the relative Chow motives TSym* 7% (&).
Theorem 4.6.1 (Eisenstein symbol maps).
1. ([Col04, Théoréme 1.8]) There is a canonical H(A r)-equivariant map
Fo(AF,Q) — Hpo(Yn,Q(1)) = 0(Yy)* ®Q
¢ — 8o

characterised by the following: if ¢ = ch((a,b)+NZ) for some N >,a,b €
Q2 — NZ?, then 8¢ = 8a/N,b/N- the Siegel unit of Definition 2.1.11.

2. ([BL94, §2]) Let k > 1. There is a H(Ay)-equivariant map

S (A3,Q) — Hy (Y, TSym* 4 (£)(1))

.k
¢ — Eisy,

characterised by the following: the pullback of its de Rham realisation is the

TSym* 7 (&)-valued differential 1-form —F(;HZ) (7)(27idz)* (27idt), where

F(k+2)

0 is the Eisenstein series defined as in [LSZ20a, Theorem 7.2.2].
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Remark 4.6.2. If ¢ = ch((0,b) + NZ), then Eisj; is the class defined in [KLZ15,
Theorem 4.1.1]. Moreover, it is a consequence of Kronecker limit formula that
if ¢ € VO(A%,Q), dloggy, which is the de Rham realisation of gy, is equal to

—Fqu) (2midr).

Remark 4.6.3. The H (A y)-equivariance of the map in (1) is equivalent to some of

the properties of Siegel units we stated in Chapter 2 (see Proposition 2.1.14).

We will need a description of the target of these maps in terms of “adelic in-
duced representations”. The reader should have in mind, for the following discus-
sion, that we are going to define classes using Eisenstein elements and, in order to
apply the local results of the previous sections, it will be helpful to identify motivic
cohomology with H (A f) representations that locally look like In) (x,v). More

precisely, we have the following.

Definition 4.6.4. For k > 0 and 1 a finite order character of A; / Q** such that
n(—1) = (—1)*, we define (n) to be the space of functions f : H(As) — C such

that

F((;)e) =llal"lld |7 n(a)f(g), forevery g€ H(As),a,d € AT b Ay,

We view it as a H(A r) representation by right translation. For k =0 and n = 1, we
define Ig (1) to be the subrepresentation which is the kernel of the integration over

H(Af)/B(Af) on I()(l).

Remark 4.6.5. Notice that restricting f € (1) to H(Qy), we find an element f; in

the space
12, 713,

Tn(g)(
with notation as in §4.2.

We finally relate motivic cohomology to these representations.

Theorem 4.6.6. With notation as above,
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1. ([Sch89, Theorem 3]) there is a H(A )-equivariant isomorphism

8()2

O ) oo 1) @ ).
(@) 57

characterised by the fact that dy(g)(1) is the order of vanishing of g at the

cusp o.
2. For k> 1, there is a surjective H(A r)-equivariant map

Ok : Hino (Y, TSym* 7 (6)(1)) © C — P (),
n
such that o (x)(1) is the residue at = of the de Rham realisation of x. More-

over this map is an isomorphism on the image of the Eisenstein symbol. (See

[S8S91, Theorem 7.4] and [Leml17, Lemma 4.3])

Moreover, we have an explicit description of the image of the Eisenstein sym-
bols via these maps. Write .7 (Afc, C)M for the subspace of .77 (A%, C) on which Z*

acts via the character 7).

Proposition 4.6.7. ([LSZ20a, Proposition 7.3.4]) Let ¢ € . (A},(C)n and write
O =11y 9. If k=0and n =1, assume that $(0,0) = 0. Then we have

_ 2(k+ 1)IL(k+2,7)
k _ ’ ~
K(BiSmorg) = —— 5 2 Ing Bu /2o |12

where the functions in the product are the Siegel sections of Proposition 4.2.26.

4.7 Definition of Asai—Flach map and classes

4.7.1 Definition of the map

We fix integers k, k' > 0 such that k+ 27 = k' +2¢' and write Z%K = %”Lm (—t—1"),
for the relative Chow motive over the infinite level Hilbert modular surface Y as

defined in 2.3.2.2. We will fix j such that 0 < j < min(k, K ). The goal of this section
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is to define a map
A T 1 S (AF,Q) @ (G(Ay),Q) — Hio (Yo, 7% (2— j)

that is H(A ) x G(A) equivariant, with actions given as follows

* H(Ay) acts trivially on the target and it acts on y(A%,Q) @ (G(Ar),Q)
via

h-(9®&)=(h-9)@&(h'(-)).

* G(Ay) acts via the natural action on Hy,., (Y5, 2*¥ (2— j)) and on the source
via

g (p®8)=05((—)g).

We consider open compact subgroups U C G(A ) such that the natural map
: YH(UﬂH) — YG(U)

is a closed embedding. It is easy to check that this holds for U sufficiently small.
We then have that the Hecke algebra 7 (G(A¢),Z) is generated as a Z-module by
the functions of the form ch(gU) where g € G(As) and U is as above.

Definition 4.7.1. Fix an Haar measure on H(A) and let V C H(A ) an open com-
pact subgroup. We define a map Ay : Y(A}, Q) — Y(A}, Q)Y by

Ay (9) ::/Vh-¢dh:Vol(W)- Y v,

veV /W
where W is an open compact subgroup of V fixing ¢.
The following lemma is an immediate consequence of the definition.
Lemma 4.7.2. If V' CV, we have Ay (¢) = Y. v-Ay:(9), where V = | JvV'.

Now let x € G(Af) and U such that xUx ™! is sufficiently small. Let

& =ch(xU) € ' (G(Ay),Z), V —HNxUx "
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We denote by 1,y the closed embedding obtained by

Lyx—1 _ ~
Lo Ya(V) <2 Yo(xUx™ 1) = Y6(U).

[kK.j]
mot

Moreover (2.3.5) gives a map CG

Hioo (Vi (V) TSym* ™ =2 7 () [+ 1+ = Hiyoo (Y (V), 0 (M) (0= j— (0+1'))),

where we added the twist by the (j -+ +¢')-th power of the determinant, meaning
tensoring with the one dimensional representation on which H(A ) acts as (j+7+

t")-th power of the determinant. One also has, as in (2.3.1), a pushforward map
A - A
(L 1)e * Hinoe (Y (V). 1 (7)) () = HE2 (Yo (xUx 1), M (n+ 1))

Composing such morphisms for i = 1,7 = 1 with the isomorphism in cohomology?

induced by multiplication by x, we obtain a map

[k K .j]

I_9j . A .
Hb o (Yir (V) TSymb % 20 ey (1) 1+ 2 B (Ya(U), M 2 = (1+4).
We also have, from the previous chapter, a H (A r)-equivariant map

S (4%,Q) — H] (Yer, TSym =27 (1))

mot
. kK —2j
O — Elsmtgq) J
In particular if ¢ € .7 (A]%,@)V for some V C H(Ay), we have Eisﬁ:gf/(; 2 e

H!

mot

(Yu (V),TSyka“k/’zj Jp(1)). We can finally make the following definition:

Definition 4.7.3. The level U motivic Asai—Flach map .&7.% lfnlgtd v fork, K,jand U

3Note that by abuse of notation we denote by jfiw both the relative Chow motive on Y5(U) and

on Y5 (xUx~!); the map in cohomology is the one described in 2.3.2.3.
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as above is defined by

S (BF Qi +1+11@ A (Glhy),Z) — Ha(Y6(U), " (2= = (1 +1)))

KK ] e kK =2
(P ®€ — l£U7* / (Elsmot,Av (J¢))’

where & = ch(xU) as above and V = HNxUx~!. Since the Hecke algebra is spanned

kK j
mot

by functions of this form, .«7.% is defined extending by Z-linearity.

Proposition 4.7.4. The above defined map satisfies

(a) IfE' =g-& for g € G(Ay), then

KK j KKj .
%ig/\mot],gUg*(q) ®§,) :g'dﬁmotJ7U(¢ ®§),
(b) Forevery h € H(Ay), one has

AT (- (92E)) = Ty 4 (9@ &);

(c) If U' C U, writing © : Yg(U'") — Yg(U) for the natural projection map, we
find
kK’ j kK’ j
'Q{ﬁmotj,U’(d)@é) = n*%gmotJ,U((p@&)-

Proof. We prove all the statements for & = ch(xU ), which is enough because func-
tions of this form span the Hecke algebra.
(a) We find that £’ = ch(xg~!(gUg)). Then the statement follows from the

commutativity of the following diagram

Yo(xUx™ 1) —2— Y5(U)

koo e

Yc;(xe’l) RN Yg(gUg*I).

together with the fact that the action of g on cohomology is precisely given by the

pushforward of the right vertical map.
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(b) We have, by definition of the action, 2+ (¢ ® &) = h- ¢ ® ch(hxU). Writing
V =xUx"'NH and using A,y,-1 (h-¢) = h-Ay(¢) we get the desired equality.

(¢) It suffices to prove the statement in the case where U’ < U, since otherwise
we can compare both U and U’ with a third open compact normal in both of them).
We can write & = ch(xU) = ¥cy/yr ch(xulU’). We then use the commutativity of

the following diagram

Ya(V') —< yg(U')

lﬂv ! ln

Yu(V) == Y6(U),
where V = H(As) NxUx~1, V/ = H(Af) NxU'x~" and the vertical arrows are the
natural projection maps. We find

* kX’ * L kK =2
BT T o) (9 @ch(xU")) = A (). (Bisht 2, )

« . kK 2 x . kK -2 » kK
=T (le)*(nv/V/)*(ElSmOt’AV/J((P)) =7 (le)*(E1sm0t7AV(J¢)) =7 szfﬁmotjy,((p ®ch(xU)),

where in the second to last equality we applied the H (A r)-equivariance of the Eisen-

stein map and Lemma 4.7.2. Since 7% o . = ¥cpypr e and Yy - ch(xU') =

ch(xU), we can apply (a) and the assumption on U’ being normal in U to con-

clude. OJ

Definition 4.7.5. We define

o T P (02, Q)j+1+1] 0K (G(Af),Z) — Hao(Yer M 2= j— (1+1))

mot

to be the direct limit ligU A F l;ll;tJU This is well defined thanks to (c) in the

above Proposition and is H(Af) x G(Ar)-equivariant with respect to the action

given above thanks to (a)-(b) in the above Proposition.

4.7.2 Definition of the classes in motivic cohomology

In order to define the Asai—Flach elements in motivic cohomology, we will specify
the choice of an element in . (AJ%,@) ®@ H(G(Ay),Z) to which we will apply
o FEEA,

mot
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We start by fixing a prime p, a finite set of primes S not containing p. Our
choice will also depend on integers m,M > 1 with M coprime to § and p. We
now will define Ky C G(Ay),W C H(Ay) and @prpmn € Y(A},Q),&wmw €
€ (G(Ay),Z) satisfying certain properties and apply .«7/. % ﬁll;tj in order to define

an element

kK j kK, A .
o = ot T ot (Ot @ Ert ) € Honon (Y (Kt ), 7 (2= j = (14+1'))).

Every definition of such data will be given in term of local data. Writing Qg =

[Tres Qp we will define

* subgroups Kg C G(Qs),K,» C G(Qp) and let

Ki:=KsxKpnx [] G(Z)cG(Ay);
tgSu{p}

* A subgroup Ky C Ky, defined by K, N det™! (1 —|—MpmﬁAF);

« functions ¢s € .7 (Q3,Z), ¢, € .#(Q3,Z) for £ & S and let

¢M,m,n = ¢S®®¢€;

¢S

e elements & € J7(G(Qy),Z) for £ ¢ S and let

Evtmn = ch(Ks) @ R) &

¢S

* an open compact subgroup W C H(A ) defined choosing Ws C H(Qs) N Ky
acting trivially on ¢g and Wy C H(Qy) for £ ¢ S and letting

W=Wsx[[We.
0ds

We consider fixed the choices at S and require that the global elements satisfy the

following
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(i) &Eptmn is fixed by right translation of Ky .z,
(i1) &prmn is fixed by left translation of W,
(ii1) @pr.m,n 18 stable under the action of W.

We first define the level subgroup K,. We are only left with saying what is the

choice at p. We let
Kpn :{<Z> €G(Zp):c=d—1=0mod p"}.
The desired subgroup Ky, » will then be given at p by
{g €K, :detg=1mod Mp™Z}.

Write Ky = Kt mn NG* (Ar) CK, :=K,NG*(Ar). We then have (cf. [LSZ20a,

Proposition 5.4.2]) that the determinant map induces an isomorphism
Yo+ (K;/[,m,n) ~ Yo (K:) XQ Hppm, 4.7.1)

where as in the previous Chapter uy,» denotes the group scheme of primitive M p"'-
th roots of unity. We now define the local terms of JjM’m?n, Or.mn, W at places £ & S,

dividing the three cases £ { Mp,¢ | M,{ = p. First of all we write, for r > 0,

( ((IJ ?)’ (:) i)) € GLy(Qy) x GL2(Qy) if £ splits
Ner =

S

) € GL,(F)) if ¢ is inert.

This is the element 1), defined in Definition 4.5.17.

4 Mp: We let

& =ch(G(Zy)), Wy=H(Z), ¢=-ch(Z]).
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¢ | M: First we define Ky | = {g € G(Z) : detg = 1 mod ¢}. We then let

& =ch(Ky 1) —ch(ne 1K 1),

Wy={h€ H(Z):deth=1mod ¢,h = (O ]> mod £%},

Or = ch(PZy x (1+£°Zy)).

¢ = p: We define K ., = {g € G(Zp) : detg = 1 mod p™, g = (0 1> mod p"}.

Let

gp = Ch(nmepm,n)-

We then choose an integer 7 > 1 big enough such that W, C 1 uKp a1, 1, where
W, ={he€ H(Z;):deth=1mod p",h = (0 1) mod p'}.
Finally for such choice of t we let
Op = ch(p'Zy x (14 p'Zp)).

It follows easily from the definitions that conditions (i),(ii),(iii) above are sat-

isfied. We finally can, as anticipated above, make the following definition:

Definition 4.7.6. For M, m,n and W, @ps m.n, Epr mn as above, we define
kK ,j kK j .
i = oty D T e (v © Entmn) € Hip (Yo, M2 — j = (14+1))

Lemma 4.7.7. The above definition is independent on the choice of the Haar mea-

sure on H(Ay) and on the choice of t at the place p.

Proof. Writing U := Ky s », we have, from (i) and (ii) that &y ., € 7 (W\G/U).
We rewrite it as

éM,m,n - ZCh(in)a

where ch(x;U) is left invariant under W, i.e. W C Vi := H(A;) Nx;Ux; ' Hence
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writing 1; := 1,y we have that by definition our classes are

k,k',
WZ( Ds oCGI[nOt J(Ei Sl;tlfA 2(¢))’

1

where ¢ = @y mn. Using (iii), the definition of the averaging map and the fact

k+k'=2j k+k'=2j
that Bisyo —~ is H(A s )-equivariant, we can write ElsmonAvi (]¢) = Vol(W) ¥,ev,/wv:

Eisﬁ:gf/q; 2J , from which the independence on the Haar measure becomes clear.
Write now W for the subgroup defined by the condition at p with a fixed choice
of t and W for the subgroup defined with a different choice, say 7o > . We similarly

write @ps m n and ¢]8,_‘m7n. We can write

0
¢M,m,n = Z w- ¢M,m,n'

wew /WO

We obtain

kK, Kk’ 0
VO]( ) A F o J (¢M’m’” ® éMvm n Vol Z'Q{ O\motj (w- ¢M,m,n & §M7m-,n)

Vol Z ’Q%ng.lr(n](()t7J (W ' (¢181,m,n ® éM,m,n))

- [W FV )] dﬁl;ll;td ((])18[ ,m,n ® €M7m7n)

(1 )Wﬁ&ﬁtjmen@éan)

In the second equality we used (ii), and in the third the fact that .o/ . % KkdisH (Ay)-

mot

equivariant. ]

Condition (i) together with the fact that o7/.7 niot’J is G(A f)-equivariant implies

ol e H3 (Yo (Kuamn) AV (2 j— (14+1))),

as wanted.

4.7.3 Comparison with Chapter 3 and [LLZ18]

In order to recover the definition of Asai—Flach classes given in the previous chapter

for k = k' = 0 (and more in general in [LLZ18]), we fix D an ideal of OF coprime
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to p. Write (N) = 91N Z and choose the set S to be given by primes ¢ | N. For
simplicity we will assume N is square-free, in particular 9 = [],n £¢, where £; is

a prime ideal of O above £. We then let Kg = [[,n K¢ C G(Qs), where
K 1={(?Z> €G(Zy):c=d—1=0mod £}.

We also choose ¢s € .7 (Q%,Z) to be ®@gnch(£Zy x (1+LZ)). We finally let Wy =
[1¢y We, where

Wg:={<jz> €H(Z¢):c=d—1=0mod ¢}.

Pulling back zl[(f[];lﬁ to Y5+, we find elements in

H2 o (Y1 (") X tagp, TSymEK ] 572 (a7) (2 — ).

mot

(kK j] .
mot,;n of [LLZ18, Definition 3.4.2]. In

If M = 1,m = 0, these are the classes AF
particular, if k = k' = j = 0, we recover the classes AF} ;mpn of Definition 3.1.1.
To see this, notice that, from the choice of the local data, the averaging map sends

Ostmn t0 VOL(W)@ps mn. So what our map does is simply sending @psm,n © Eptmon

k+k' —2j
m0t7¢M,m,n

to 1, (Eis ), where 1 is the closed embedding

Yi(Np") = Y7 (MNp")

and @y = ch(Np"Z x (1 +Np"Z)). In particular, if k = ¥ = j = 0, Theorem
4.6.1(1) tells us that the class constructed is precisely 1.(go | /N) as in Definition

3.1.1.

The classes AFEﬁﬁ:ﬂPm, pnq Ar€ defined in [LLZ18, Definition 3.5.1] (where the

trivial coefficient case is Definition 3.1.4/Lemma 3.1.5) using a twist by the matrix
(:} T) for any a € Op/(Mp™Or +7Z). The role played by the Hecke algebra
€ (G(Ay)) in the definition of our map is exactly to produce such perturbation
of the embedding 1. Moreover, the input elements &y my € J(G(Af)) we are

considering involve matrices of the same form for a specific choice of a € O ®
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7/(Mp™ + 7). More precisely we would get the same classes of [LLZ18] if we
took the ¢-component of &, for £ | M to be ch(n, 1Ky 1). The term ch(Ky )
appearing in our definition can be thought as a correction term. Indeed the tame
norm relations we will prove are not the same as the ones obtained in Corollary 3.3.4
(and more generally in [LLZ18, Theorem 3.5.3, Corollary 4.3.8]), where the factor
appearing is the local Euler factor P(c, Lp—1-i ) summed with a term divisible by
¢ — 1. Thanks to the correction term at the primes dividing M, we in fact do not get
this extra factor and we are able to show that our classes form an Euler system, with

no need to lift the classes using [LLZ14, Lemma 7.3.4] ([Rub00, Lemma IX.6.1]).

4.8 The Asai-Flach Euler systems norm relations

4.8.1 Pushforward compatibilities in motivic cohomology

We now prove that the classes just defined satisfy compatibility properties if we

vary the level K, and if we vary the cyclotomic field in the p-direction.

Theorem 4.8.1. For n > 1 we have, writing T, : Yo(Kymn+1) — Y6(Kmmn) for
the natural projection,

kK j kK j
(o)< Catns 1) = bt

Proof. Going back to the definition of the local data in §4.7.2, we see that the only

place where these differ is p, where

Ep = ch(NpmKpmn),

while we can choose the same 7 sufficiently large, so that we have the same W and
/s /s
the same ¢, in the definition of Zz[\]y:n{z] 41 and zj[(flzjnl So locally at p, we need to

check that
(7)s (A T o) p(9 @ h (XK pmni1))) = (F T o) p (@ @ Ch(xK ).

But this is true, since we can write ch(xKpmn) = Liek, /K, ch(xkK mnt1)

Jm,n+1

and the pushforward act on cohomology by multiplication of coset representatives
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k e Kp’m7n/Kp7m7n+1 : D

The following theorem is essentially the proof of the vertical type Euler system
norm relation for the classes we will obtain in Galois cohomology in the next section

)
starting with the motivic input z][{f,]fn]n]

Theorem 4.8.2. For m > 1 we have, writing Ty, : Y6(Kym+1,0) — Y6 (Kymmn) for

the natural projection,

U'(p) .
KKy )i k) Fm=1
(n.m)*(ZM,m-i-l,n) - , : Mmn
pj+t+t

where U'(p) is the Hecke operator in I (Kp m\G(Qp)/Kpmn) given by the dou-
ble coset of (";I ?)

Proof. This theorem follows from the choice of the local data and from Proposition
4.5.19. As in the previous theorem, the elements @us m-+1., ® Eprmr1.0 and Ppg iy &
Emm n are the same at places different from p. Hence we are comparing two values

of the p-part map
(o Tk p: L Q) +1+1]0 H(G(Qp)) = Hao(Yo, 27 2~ j— (e +1))),

which is H(Q,) x G(Q,)-equivariant. Since it is enough to check the equality af-
ter tensoring with C, we can apply Proposition 4.5.19. Indeed, reasoning as in

the proof of the previous theorem, we have, that on the left hand side we have

kK
Wmm(ﬂ{yme”)p(% ®ch(Npm+1Kpmn)), where ¢, = ch(p'Z, x (1+p'Zy))
and Wy, i1 = {h € H(Z;) : deth = 1 mod p" ! h = (0 1) mod p'}. Hence the

classes we need to compare are
kK
[KHJ(PI) : Wp,mH](dt@motJ)p(%,w ®Ch(np,m+1KP,m7n))’

Kit,1(0") - Wy ) (7 T o) (1,00 @ h(1p K p o))

The proposition tells us, together with Remark 4.5.21, that (7. Z<r?) (01,00 ®

mot
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ch(Npm+1Kpmn)) =
p*(jthth/) ,(p) ifm>1
. m >
| P o '(dylr;l;td)p(‘l’l,w®Ch(rlp,pr,m,n)) )
pTl(Ul(p)pf(ﬁtﬂ)_l) if m=0.

The factors %, p+l cancels out since [Ky 1(p") : Wy ]/ [Ku 1 (D) : Wy mi1] = [Wpm :

W, m+1] is equal to p, p — 1 respectively. O

4.8.2 Hilbert cuspforms and Galois representations

In the previous chapter, we constructed some classes

kK j ;
i € Hoo (Yo (Kutma) A (2= j = (1-41)).
We now will realize these classes in étale cohomology and use the Hochschild—
Serre spectral sequence to find elements in Galois cohomology of the representation
attached to a weight (k+2,k"+2) Hilbert cuspform. We will then show that they

satisfy the Euler system norm relations.

We consider f a cuspidal Hilbert newform of weight (k+2,k'+2) and of level
Ky C G(Ay). We assume k = k' mod 2 and we write w = k+2+2t =k’ +2+ 27
Denote by L the number field generated by the Hecke eigenvalues {An }mc g, and
fix a prime p. We fix an arbitrary place v of L dividing p.

Consider the Asai representation attached to f as in Definition 2.4.6 and the
Asai L-function, which was defined by an Euler product of factors PgAS (f,£7%) asin
Definition 2.4.8.

Recall that from the action of G(A () on HZ <(YG)@, %”L(VM (r+1 )) we obtain
the finite part of the automorphic representation corresponding to f. We will denote
it by ITy = ®/€Hg, where I1; is a G(Qy)-representation and it is spherical for all but
finitely many primes ¢. We can describe these I, and relate the local L-factor with

the Asai Euler factor at ¢ using Proposition 2.4.9.
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Proposition 4.8.3. For { as above, let

G I, (X, W) if € splits

Ig) (X, W) ifLis inert,

where

x1(0) = o t=V2 yy(0) =B/,

1/2 1p x(0)=at™ y()=pe .
x2(0) = ol =12, yy(0) = Bt/

We then find that 11, >~ o and

, L(o,s)
Pé'%s (f,g—l—s—ﬁ—t—ﬁ—t ) —

L(As(c),s)

Proof. This follows from Proposition 2.4.9 and by applying Theorem 4.2.21 and
Remark 4.2.22. First we deal with the split prime case. At a place ¢ as above the
spherical representation is determined by the values y;(¢), y;(¢) being the roots of
X2 — 0712 2,X + w;, where A;, ; are the eigenvalues of T'(I;),R(l;). Since f is a

newform we have A; = a;.(f) and w; = £"~2¢,.(f). Hence we need to solve

ay (f) = a1+ P =020 (0) +wi(0), 02, (f) =" Py = x1(0)wi(0);
a, (f) = 0+ B =02 (2 (0) + ya(0)), 0 2e,(f) =L oo = x2(O)ya(0).

From where we find the claimed values of x; (), yi(¢).

For the inert prime case we proceed similarly, finding x (¢), y(¢) to be roots of
X2 — (02)~121X +u, where A, i1 are the eigenvalues of T (£),R(¢). Now A = ay(f)
and u = (2("=2)g,(f). Hence from

a(f) = o+ B =L(x(0)+ (), LU Dey(f) =B =x(O)y(0)

we find the claimed values of x(¢), y(¢). O

We use the characterisation of the local components of I = II; obtained in the
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previous corollary to prove that if the Hilbert modular form is not a base change lift
of a modular form of GL; /Q, then a certain Hom-space is zero. We denote by cry
the Hecke character of F given by the central character of IT and we let 7, be the

character of QZ given by the restriction of I, to the center of H(Qy).

Proposition 4.8.4. Let T be the representation of H(Ay) given by y(det), where y
is a character of the idéles of Q such that nz is equal to xn, for every L. If I1 is not

a twist of a base change lift of a cuspidal representation of H(Ay), then
Homy ) (I1, 7) = 0.

Proof. We will assume for simplicity that y is trivial. If Homgy ) (IT,7) # 0 then
Homy @, (Iy, 1) # O for every £. In particular for all primes ¢ as above which split

in F, we have

Homy g, (I(x1, ¥1) ® (%2, ¥2),1) = Homy g, (I (x1, 1), 125 ' w5 1)) #0

Hence Iy = [Ty ®ITj; is of the form

I y) @I Ly o I w) @Iy x ).

Hence ITy ~ I3 ® 1 y;. Letting ¢ be the non trivial automorphism of F/Q and
o(IT), = I4(s), the representations IT and o (IT) ® oy are isomorphic at all but
finitely many primes. This follows from the above reasoning for all but finitely
many split primes; for inert primes we have o (I1); =T, and Homgq,)(Il;,1) #0
forces the central character of I to be trivial. Moreover @y restricted to the ideles
of Q is trivial. We can then apply [LR9S8, Theorem 2(a)], which implies that IT is
a twist of a base change lift of a cuspidal representation of GL; /Q and reach the
desired contradiction.

If v is not trivial, we proceed as above and obtain that for all but finitely many
split primes ITy ~1II; ® x; l;/lyé ; for inert primes we have I, ~ I, ® @y, - (}/Ljl o

Nmg, /Qf). We find as above that II is a twist of a base change lift of a cuspidal
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representation of GL, /Q, since it is isomorphic to a twist of o(II) by a Hecke

character trivial on the ideles of Q. O

We now see that the Asai representation appears in the parabolic €étale coho-

mology of Y. Write A = (k,k',z,1).

Definition 4.8.5. We define c%”L[VM to be the étale sheaf of L,-vector spaces on Y,
for U sufficiently small, which is the étale realisation of the motivic sheaf t%”LW of

§2.3.2.2. We denote by .7, its dual.

v

For simplicity let . := ,%’i(f) (r+1"). We consider parabolic étale cohomol-

ogy: let YGBB be the Bailey-Borel compactification of Y5 and write j : Yo — YgB for

the natural open embedding. Then parabolic cohomology is defined by
i (Y,00-2) = imHg (Y6 (K)*) g, j1s2).

These cohomology groups have both a Gg and a G(A ) action.

Theorem 4.8.6 ([Nek18],[BL84]). Let .Z be as above, with A = (k,k,t,t") where
k+2t =k'+21". There is a G x G(Ay)-equivariant decomposition

Hg\(Yg0,%) = PVnell’,
I

where I1 runs over the finite part of cuspidal automorphic representations I1 ® I
of G where Il is a discrete series of weight (k+2,k' +2). We denote by T1" its
dual G(Ay)-representation and Vi is the Go-representation defined by the tensor
induction of pr1 twisted by t +t', where JL(pr1) = IL In other words, if T is the
automorphic representation generated by a Hilbert cuspidal eigenform f, pri = py,,

and Vi = V?S.

Taking the dual (as Gg-module) of the cohomology group in the theorem, we

get a Gg X G(Ay)-equivariant decomposition

HE (Yoo 2= (141) = PV o1
I1
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Let us now fix an automorphic cuspidal representation I1. We have the follow-

ing

Proposition 4.8.7. Let K C G(Ay) be a level such that TIX # 0 and T a set of primes
including the ones at which K is ramified. Let I be the maximal ideal of the Hecke
algebra away from T given by the kernel of the action on TIK. Then the localisation
at I of Hét(Yg(K)Q,Z) is zero for i # 2 is 0 and is equal to the localisation of
parabolic cohomology for i = 2.

Moreover such localisation is given by
(Ha(Y6(K)g,-2)), = (Hz,(Y6(K)g.-£)), = Voo ()" [t +1)¥,

In particular the localisation is independent on T.

Proof. For the fact that cuspidal representations contribute only to the degree 2
parabolic cohomology, see [Nek18, (5.9)]. The fact that the canonical map from
parabolic cohomology to étale cohomology in an isomorphism when localising at
I follows from example from the exact sequence in [Nek18, A6.17]. Finally the
IT-component is the only one appearing in the decomposition thanks to strong mul-

tiplicity one (see [PS79, Sha74]). [

kk’.j . A .
Wk is Hao (Yo, 42— j— (1 +

t"))). Let f be a fixed Hilbert eigenform of weight (k +2,k’ +2) and II the cor-

Now recall that the target of our map o7 %

responding G(A r)-representation, so that Vj; = (Vﬁs)*. In order to find classes in
Galois cohomology of (VJ{*S)* we will, roughly, use the continuous étale realisa-
tion map and then apply the above proposition together with the Hochschild—Serre

spectral sequence. We will find a G(A r)-equivariant map
A . % .
priv: Hyo(Yo, 74 (2= j = (t+1) — H'(Q, (V)" () @11".
We work for any K level subgroup of G(Af).

* We have (see [Hub00]) a realisation functor for continuous étale cohomology
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(as defined in [Jan88]) for varieties defined over Q

rec: Hoo (Yo (K), A (2= j— (141'))) — H(Y6(K), A (2= j— (1 +1))).

v

* There is an Hochschild—Serre spectral sequence (see again [Jan88]) relating
continuous étale cohomology for varieties over Q with étale cohomology of

the base change over Q
E}! = HY(Q,H(Y6(K), 7)) = HY " (Y6(K) g, 7).

From this, one gets a map from the kernel of the map H. (Y(K),2) —
H.(Y6(K)g, 2)%¢ to H' (QH '(Y6(K)g, Z)). In particular, for i =3,
since Artin vanishing theorem tells us that Hét(YG(K)Q,@) = 0 being i >

dim(Y5(K)) = 2, we obtain a map
HS : H} (Yo (K), H' (QH2(Y6(K) g, "
(Y6 (K), 4 () — ' (QHA(Y6(K) g, 27 ()
where in particular we can take n =2 — j — (¢ +1').

* We now localise at the maximal ideal / given by the kernel of the Hecke
algebra acting on ITX as in Proposition 4.8.7. Applying such proposition and

projecting to the Il-isotypic part we find

(Ha(Yo(K), A 2= = (1 +1)r — H' (Q, (V)" (=))) @ (),

Since all these maps are compatible with respect to changing K and since, by
Proposition 4.8.7, the localisation is independent on the choice of the set of primes

T (which may vary changing K), we can construct a map of G(A ¢)-representation.

Definition 4.8.8. We define pryy to be the G(A )-equivariant map

P Hoy(Yo, 62— = (t4+1))) — H' (Q, (V) (=) @T1”
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obtained by the previous steps and taking the limit with respect to K.

In order to define classes in Galois cohomology, we need to take a “projection”
to H' ((@ (VJAS)*(— )) from the target of the map in the previous definition. To do

that we assume that IT is unramified at p. We can consider H ;& 0. Let

Ko(p) = {r € G(Z,) : 7= (;) mod p}.

We choose a to be one of the eigenvalues of the Hecke operator U(p) acting on
Hf"(p ). We fix a finite set of primes S to be set of primes outside which Iy is a

spherical representation. We now fix the local data as in §4.7.2. Write

K’ = Kg X H G(Zg) X K()(p),
UpS
where K is chosen so that X’ # 0 and K’ is sufficiently small. In particular we
assume that the conductor of II is not trivial and it is coprime to 2,3 and the dis-
criminant of F'. We fix and choose an arbitrary vector vy € 11X’ in the U (p)=«a

eigenspace. This gives a homomorphism
ve : (MK — L.

Note that the choice of this line in (HV)K/ is arbitrary, however if one wants to work
with integral classes and apply these results in the setting of Iwasawa theory, then
the assumption of I being ordinary at p is added and one chooses & to be the unique
eigenvalue of U(p) which is a p-adic unit.

What we are going to do is to consider the image of the Kj; , ,-invariant classes
defined in §4.7.2, take the image via the G(A r)-equivariant map pryy and then apply

Vo For W, 0p1 ., ZjM mn asin §4.7.2, we consider z[ 4 ’j] as in Definition 4.7.6,

e = s T (Ot ® Entann) € Hipou (Vo AH 2 — j— (141)).

Since these elements actually lied in the Ky, ,-invariant subspace of the motivic
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cohomology group, when we apply the étale regulator and the map obtained via

Hochschild—Serre we obtain classes in
H' (QHA (Yo (Kima)g A4 2= = (+1))))
Recall from (4.7.1) that, restricting to G*, we find
Y6+ (Kagman) = Yo (Ky) X Hptpr-

We now recall a result that will be useful to use the above isomorphism to land in

Galois cohomology over cyclotomic extensions.

Proposition 4.8.9. [NekI8, Corollary 5.8]. Let U C G(Ay) be the stabiliser of Yg+.
We have a Gg x G(A ) isomorphism

] G(Ay) i *
Hq(Yg,g,-2) = Indy " Hy (Yge g, "2,

where the natural embedding 1 : Y5+ — Y is an open immersion.

We also recall, as in § 3.3.1, that for any variety X over Q we naturally have,

applying Remark 2.1.6, the following isomorphism of Gg-modules
Hy (X XQUn)g:Z) =~ IndGQ(”N) Hy(Xp,Z).
Moreover, by Shapiro’s lemma we have

H'(QIndc2 V) =H"(Q(uy),V).

N)

Applying the above proposition and these isomorphisms for N = Mp™ and for the
Gg-module HZ (Yg- (K;,’mﬂ)@,TSym[k’kq 71,()(2— j)), we can give the follow-
ing

Definition 4.8.10. For m > 0 we define a class

Do g € H (Qagpm), (VA (=)
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by letting
(pj+l+t/6p .
o /s Im
L . . [kak 7‘]}) -
M (1 - pf+’+f’cp) (vaoprpv) (ZM7m7n ifm=0.
(04

where o), is the arithmetic Frobenius at p in Gal(Q(ua)/Q).

4.8.3 Norm relations in Galois cohomology

These are the classes that, as we are going to show, form an Euler system for

VAGi+1),
Theorem 4.8.11 (Vertical norm relations). Let j < min(k,k’) and k,k' > 0. We have

CoresQ(”M’JMH) IL,j 1)
Quypm)  \*Mpm+ia) = Mpmar

Proof. Since the pushforward by
H2(Yor (K}) X g, TSYmME¥) 54 (7)) ™% HE (Yo (K3 X pagp, TSYymEX 54 (o))

induces corestriction in Galois cohomology, the result is an immediate corollary of

Theorem 4.8.2. This indeed can be rewritten as

U'(p)

. Y rq ifm 2 1

(Tn)s a1 ) =3 70 i
9 9 (U/(p) _1) y1Ey 1fm:()
pj+t+t/ ’

seen as elements in H (Yo (Kj‘,,mn),TSym[k’kq #1,(<7)). Here U'(p) is the Hecke
operator given by the double coset of (": ?) in A (Kyp 100 \G"(Af) /Ky 1 ) and
we used the fact that, as explained in the proof [LLZ18, Proposition 4.3.4]%, the
Hecke operator of Theorem 4.8.2, acts on HZ (Y- (K3t mn) 0 TSymr1 (7 (o))

as U'(p). The isomorphism (4.7.1) intertwines U’(p) with U’(p) x 6, !, where

“4The pullback of the projection from Y5+ to Y intertwines U’(p) on the cohomology of Y5+ with
p gy (p) on the cohomology of Yg, where %'(p) is the normalised Hecke operator given by
P (p).
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U'(p) € J(K;\G*(Af)/K,;) and o, ! is the arithmetic Frobenius at p in
Gal(Q(uy)/Q). Since vq projects to the U'(p) = a eigenspace, the theorem
follows. O]

Theorem 4.8.12 (Tame norm relations). Let j < min(k,k") and k, k' > 0. We assume
that T1 is not a twist of a base change lift of a cuspidal representation of GL, /Q.
Forany (tMp, { & S, we have

Q(H m) H7' o -1 Hv.
CoreSQ(uZan) (ZEMme,(x> = 0(o; )ZM;’",ON
where Q(X) = det(1 — X Frob, ' [VA(1+j)), ie. Q(c; ") = P(¢"" Vo, ) for
Py(X) = det(1 — X Frob, ! |VAS) as in Definition 2.4.8.

Proof. First of all we notice as above that the corestriction map is induced by push-
forward under the projection 7 : YG(Kypsmn) — YG(Kptm,n)- The class on the left is

then obtained in motivic cohomology by applying

%ﬁkk]

S (AL, )+t +110 (G(A ) — Haoi(Yo(Kentna), 22— J))

—> Hmot(YG(KMm,n)a -@(2 - J))

We have 7T, 0.5/ F e (9 0 &) = Yk o Ty (0D E) = Ly o F o (9 @ (k- €)),

where k runs over coset representatives of Ky n/ Kyt mn- In particular we find that
Zk:k' Emmn = Eirt s
where ééMmﬂ is equal to &y, at every component but at £ where we find
;kz - (ch(Ky,1) —ch(ng,1Ke1)) = ch(G(Zq)) — ch(ne1G(Zy)).

Hence both the left hand side and the right hand side of the claimed equality are

' i kK j
obtained as image of the same map v o pryv 0 & F g,

S (AL L)j+1+110 5 (G(Ay), Z) — H' (Qtatpm), (V)" (=)))-
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They are obtained as image of elements that are the same at every component dif-

ferent from ¢, where the right hand side is the image of
S ((eh(PZ x (14 624)) & (ch(G(Zy) — ch(Ne,1G(Z4)))

and the left hand side the image of ch(Z?) ® ch(G(Z)). The factor £ — 1 appears
comparing Vol(W) for the two different motivic classes, while % comes from the
%-factor in the definition of the Galois cohomology classes. So it is enough to
compare the image of these two elements via the component at £ of the above map.

We will first compare the images through each of the the maps

3:.2(Q7,2)[j+1+110 A (G(Q),Z) — H' (Q(kwpn), (V%) (=) @I} — 117,
(4.8.1)
where the last map is a G(A y)-equivariant projection to IT), obtained by choosing
a basis element of H'(Q(tppm), (st)*(— J))- Note that this Galois cohomology
group is a priori infinite dimensional, but since it is actually equal to the Galois co-
homology of some maximal unramified (outside a finite set of places) extension, we
are reduced to take this projection map for a finite number of basis elements. First
we assume that k + k" —2j # 0. By definition and by Theorem 4.6.6, Proposition
4.6.7 and Theorem 4.8.6, we find that 3 satisfies the condition of Corollary 4.5.20,
for k = k+ k' —2j. Condition (%) follows from purity.

If M =1,m =0 we can apply then Corollary 4.5.20 with ¢ = I1,, together with
Remark 4.5.21 for h = j+t+1'. The factor of discrepancy is then L(c,h)~!. We
then apply Corollary 4.8.3 to get

L(o,h) ' =Ly, j+t+) T =P ).

The multiplication by such scalar is carried when we take the projection via vy
into Galois cohomology and this is precisely what we were looking for (since oy is

trivial in this situation).

It M >1m > 0, we apply this to every twist by Dirichlet characters
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modulo Mp™ and apply Shapiro’s lemma. We are now comparing classes in

Hl(@(,uMpm),(VfAs)*(—j)). Since p := (Vjﬁ“)*(—j) is a Gg-module, we have
G I

Inng(“M” )(p) = @, p ®n, where N varies over all characters of the quotient

Go/Go(uy,m) = Gal(Q(mpn) /Q) ~ (Z/Mp™Z)*. We hence find
H' Q) (VF*)) = DH' (Q, (V) @n).
n

Since o is the image of £~ in Gal(Q () /Q), if we write z € H (Q(tarpm), (Vjﬁ*s)* (—J)))
as (zn)n, we have that G[l 2= (N(¢) -zn)n. Hence we have reduced to prove
that the m-components of the classes we are considering differ by the factor
P,(¢=17in(¢)). We are then again in the case M = 1,m = 0. The character 1
can be seen as an unramified character of Q; for £{ Mp via class field theory and
it then defines a one dimensional representation of G*(Qy) and of H(Qy) via the
determinant map. Hence the classes z;; we are considering are locally at £ images
of the map (4.8.1) with the action of H(Qy) twisted by 1. The space of such
maps factoring through the Siegel section will now be isomorphic, via the bijection
of Proposition 4.5.11, to a space of the form Homg (I (xn,yn) ® I, 1), where
XV - xr, = 1. Theorem 4.5.1 implies that this space is again one dimensional, and
the construction of a basis carries through as in Section § 4.5, where in the choice
of the auxiliary character in Definition 4.5.2 y is replaced by yn. We obtain the

same results, but with L(o ® 1, k) in place of L(o,h). We then find, as we wanted,

LI, @n, j+t+t)" =P In(0)).

We are left with the case k +k' —2j = 0. The issue here is that the divi-
sor map from &*(Y) ® C in (1) of Theorem 4.6.6 has a kernel. It consists of
non-generic representations of H(A ). For any such representation 7 we have that
Homy s ) (7 ®I1,C) = 0 thanks to the assumption that IT is not a base change lift
from GL; /Q and Proposition 4.8.4. Hence the local map factors through the Siegel

section also in this case and the proof follows as above. ]
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Remark 4.8.13. These classes hence satisfy the Euler system norm relations (NR)
as stated in the Introduction. In particular we proved the tame norm relations for all
primes ¢ ¢ S. In [LLZ18] these were proved only for £ inert in F' or ¢ split with the

condition of the two primes ideal in F' above it being narrowly principal.

Remark 4.8.14 (Integral classes). In fact, one is interested in “integral classes”:
fixing a Gg-stable lattice T C (VJAS)*(— J)» we would like to have classes in
H'(Q(u,),T) satisfying the same norm relations. To do that one works with in-

kk',j

tegral Eisenstein classes, applies the map «/.%

and slightly modifies the pro-
jection map v o pryy by choosing an appropriate Hecke operator that will define a
lattice as above. This is explained in details for the case G =GSp4 in [LSZ20a, §

8.4.6] and in the discussion following [LSZ20a, Proposition 10.5.2].

4.8.4 A remark on Beilison—Flach Euler system

It should now be clear to the reader that, proceeding in a completely analogous way,
one can reprove Euler system norm relations for Beilinson—Flach classes. These
elements were constructed in [LLZ14] and [KLZ15] and lay in Galois cohomology
of the representation attached to the Rankin—Selberg convolution of two modular
forms f, g of weight k+2,k’ + 2 respectively. This means that in this case one works
with IT = IT; ® Iy, where ITf,I1, are automorphic representations of GLy(Af).
Hence we have, at all but finitely many places, a spherical representation II, of
G(Qy) as in Definition 4.4.2, where now G = GL; x GL,. Using §4.4, one can
restate all the results of §4.5 for G; everything is already there, since we are in the

degenerate case where all primes split. One then defines a map
KK j : / .
B ol L (A Q) © A (G(A ), Z) — Hypo (Yo, TSym* )2 (6) (2~ ),

similarly as in §4.7.1, where now TSym[k’k’] H1(&) is a motivic sheaf over the
GL; x GL; Shimura variety and the considered embedding t at the level of alge-
braic groups is the diagonal embedding GL, — GL; x GL;. In this case one uses

CGAT - TSym =21 (&) — ¥ (TSym ¥ e (6)) (- ),

mot
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as in [KLZI15, Corollary 5.2.2]. The local input is then the same as in §4.7.2,
again in the “all split primes” case. The proofs of all results in §4.8 carry
over, where in this setting the Galois representation (V; ® V,)* appears in
H2(Yg 0, TSym* ¥ 52(£)(2)).

Both in this case and in the Asai—Flach one, the obtained classes are not exactly
the ones obtained pushing forward Eisenstein classes via “perturbed embeddings”.
The classes explicitly defined this way in [LLZ14] and [LLZ18] satisfy the expected
tame norm relations at ¢ only modulo (¢ — 1); one obtains an Euler system thanks
to a result by Rubin stating that these relations are enough to “lift” such classes to
an Euler system. This error term does not appear in this setting because at primes
¢ | M we already add a correction term in the definition of the local Hecke algebra
element &y ., (see 4.7.3). This can be seen to be the right choice from the local

computation of Corollary 4.5.20.



Chapter 5

Kolyvagin systems and Selmer

groups of elliptic curves

In this chapter we study an application of the existence of Kolyvagin systems for
rational elliptic curves. More precisely, we generalise a result of [How04] which
gives a bound on the torsion part of a Selmer group attached to a rational elliptic
curve and a quadratic imaginary field K, subject to the non-vanishing of the bottom

class of such Kolyvagin system.

5.1 Main result and Heegner points

Let E£/Q be an elliptic curve and p an odd prime of good ordinary reduction such
that E[p]9e = {0}. We then work over an auxiliary quadratic imaginary field K

satisfying the following (slight generalisation of the) Heegner assumption
every prime of bad reduction of E and p splitin K. (Heegner hypothesis)

We also assume that E[p]°% = {0} and that E does not have CM by K. Notice that
we can produce infinitely many K satisfying these conditions.

In this chapter we prove the following result

Theorem 5.1.1. Consider T = T,(E) as above and let F be a Selmer structure.
Suppose there is a Kolyvagin system for (T,.F) (see Definition 5.2.8) such that

K1 # 0. Then HE;(K ,T) is a free rank one module over 7, and there exists a finite
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Zp-module M such that
(i) Hy(K,E[p~]) ~ Q,/Z, ®M ® M,
(ii) lengthy, (M) <length, (H3(K,T)/Z,-Ki)+1,

where t is a non-negative integer depending only on Im(Ggx — GL(T,(E)) ~

GL(Z,)) and is equal to zero when such representation is surjective.

Remark 5.1.2. Notice that the theorem applies also in the case not covered in
[How04] where the elliptic curve E admits a rational p-isogeny with non-cyclic
kernel. Moreover the constant ¢ can be thought as measuring how much the repre-

sentation Gxg — GL(T,(E)) ~ GLy(Z,,) fails to be surjective.

5.1.1 Heegner points

We now recall the existence of a Kolyvagin system for 7" and a certain choice of .%,
such that the bottom class is non-zero if and only if the analytic rank of E /K is one.
Such Kolyvagin system is built using Heegner points.

The construction of these classes is carefully explained in [How04, § 1.7]. We
only sketch the construction for the sake of completeness and we refer the interested
reader to op. cit. for more details. We let P[m] be the Heegner point of conductor
m. It is constructed as follows. Thanks to the Heegner hypothesis we can fix an
integral ideal 91 of Ok such that Og /9 = 7Z/NZ, where N is the conductor of E.
For ¢ a prime which is inert in K we denote by a; € 7Z the trace of the Frobenius at
¢ on T,(E). We define an ideal I, C Z,, to be the smallest ideal containing ¢+ 1 for
which Frob, acts with characteristic polynomial X2 — 1. Therefore I, = (ap, ¢+ 1).
For every integer n square-free product of primes as above, we let 4, to be a point

on the modular curve Xo(N) corresponding to the cyclic N-isogeny
h=|C/0,~C/(0nm)],

where 0, is the order of conductor n in Ok. The point A, is defined over K[n], the
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ring class field of K of conductor n. Fix a modular parametrisation
¢:Xo(N) = E

and let P[n] := ¢ (h,) € E(K|[n]). These points satisfy the following norm relations
for £ 1 n:
N, /k [ Plnl) = ag- Pln).

In order to produce the Kolyvagin system, one applies a derivative operator very
similar to the one considered in the Introduction (see (Kolyvagin derivative)). If n

is as above we let ¢ (n) := Gal(K[n]/K) and
G(n) := Gal(K[n]/K]1]).
For every prime /, fix oy a generator of G(¢) and define the derivative operator
Dy € Z,|G(?)] as
4
Dy =Y ioj,
i=1

We then let D, = [y, D¢ € Zp|G(n)]. Similarly as in (1.2.1), one finds
(o0y—1)Dy= £+ 1—Norm.
Let S be a set of representatives for G(n) C ¢4 (n), and let

%, = ngDn(P[n]) € E(K[n)]).

Let Iy = Yyuly C Zp, where I, is the ideal (¢ + 1,a¢(E)) C Zp. One then
shows, using the above congruence relations, that the image of the class in
E(K[n])/I,E(K]n]) is fixed by ¢¥(n) and hence, also its image under the Kummer

map in H'(K|[n], T /1,T). Now consider the restriction map

res

H' (K, T/L,T) = H' (K[n], T /L,T)?™ .
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In [How04], the class k;, is defined to be the preimage under this map of the class
built above in H' (K[n], T/ InT)g("). In op. cit. the fact that this map is an isomor-
phism follows from the representation 7" being irreducible and it is the only point in
the construction where this assumption is invoked. However, this holds true also in

our setting because
H°(K[n),T/1,T) = H*(K[n],E[l,]) = 0.

This follows from the fact that E[p](K|[n]) = 0. This is a consequence of K[n] being
disjoint over (Q from extensions generated by p-torsion points of E. Such extensions
are indeed unramified outside p and the places dividing N, the conductor of E.
Since n is coprime to Np and divisible only by inert primes, the extension K|n|/Q
is unramified at places dividing N p.

Now consider the Selmer structure . onV = T,(E) ® Q, given by the unram-
ified local condition (see § 5.2.1) at places of K not dividing p and at v|p take the

image of the local Kummer map
E(K,)®Q,— H'(K,V)

Define the local conditions on 7,,(E) and E [p>] =2V /T,(E) by propagating .%. As
shown for example in [Rub00, Proposition 1.6.8], this Selmer structure gives rise to

the usual p-Selmer group considered in 1.5.1, namely
Hé; (K,T,(E)) = Sel,(E/K), Hrly (K,E [p~]) = Sel,~(E/K).

Finally, one considers some modified Selmer structures .% (n) (see Definition
5.2.7 below). It can be shown (see [How04, Lemma 1.7.3 et seq.]) that the classes

K, actually lie in the corresponding Selmer groups, i.e.
Ko € Hy, (K, T /I,T)

and they satisfy the Kolyvagin relations, defined in (K) below. In other words,
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applying Gross—Zagier’s result (1.5.2) and Theorem 5.1.1 we find

Corollary 5.1.3. Let E/Q be an elliptic curve and p a prime of good ordinary
reduction such that E[p]°Q = {0}. Let K be a quadratic imaginary field chosen as
above. If the analytic rank of E /K is one, then Sel,(E /K) is a free rank one module

over L, and there exists a finite Z,-module M such that
(i) Selp=(E/K)~Qp,/Z,®M M,

(i) lengthy, (M) < lengthy (Sel,(E/K)/Zp- K1) +1 for somet € Z>q as in The-

orem 5.1.1.

5.1.2 Iwasawa theoretic applications

As mentioned in Remark 1.5.2, Theorem 5.1.1 is proved in [CGLS20] for twists of
T,(E) obtained as follows. Let I" :=Gal(K../K) be the Galois group of the anticy-
clotomic Z ,-extension of K, let A = Z,[[I']] be the anticyclotomic Iwasawa algebra
and P # pA a height one prime ideal of A. Consider R the integral closure of the
ring A /B and the Gg-representation T = T,(E) ®z, R(cup), where the character osp
is given as follows:

op: Gy »I'—>A—R

The existence of a A-adic Heegner point Kolyvagin system, implies the existence of
a Kolyvagin system (for suitable Selmer structures) also for such 7. Let us denote
the bottom class with k. One then proves that the torsion part of the Selmer group

for V/T is Msy; © My, where
lengthy, (Msp) < Ind(xp) + (1 + egp) (rkz, R), (5.1.1)

for some ez > 0, which depends on 1.

In order to prove one divisibility in the Heegner point Iwasawa main conjec-
ture, one needs to prove inequalities for height one prime ideals 33 dividing the
A-ideals involved in the main conjecture. However, one cannot apply Theorem

5.1.1 directly to T = T,(E) ®z, R(0sp). Taking P = (g) such a prime, one proves
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the desired inequality by taking the auxiliary ideals °3,, = (g + p™) and considering
a limit for m — oo. If m > 0, *3,, is also a height one prime ideal and it satisfies
rkz,, (A/B) = rkz,(A/PBm) and ey = eq;,,. Hence the error term appearing in the in-
equalities (5.1.1) for T = T,(E) ®z, R(0sy,,) is independent on m and it disappears

when one divides by m and takes the limit for m — oo,

5.2 Selmer groups and Kolyvagin systems

5.2.1 Selmer structures and Selmer groups

Let F be a number field. Let L be a finite extension of (@, with ring of integers
R and uniformiser @ and consider M an R-module with continuous action of G,
the absolute Galois group of F. We consider also a triple (V,T,W) where V is a
finite dimensional L-vector space with continuous Gg-action, T C V is a Gg-stable

R-lattice and W =V /T.

Definition 5.2.1. A Selmer structure .% on M is a choice of local conditions
HL(F,,M) < H'(F,,,M) for every place w in a fixed finite set of places X(.%)

containing p, all archimedean places and all the places at which M is ramified.

Examples of such local conditions are

(
H),(F,,M) :=ker (H'(F,,,M) — H'(I,,M)) unramified at w,

~ H' (G, /1y, M™)
HL(Fy,M) =

H'(F, M) relaxed at w,

0 strict at w.
\

Given a Selmer structure one defines the associated Selmer group

HY(F,M) :=ker(H'(F*P) JFM) —» [] H'(F,M)/HY%(F,,M)),
weX(F)
where FX(#) is the maximal extension of F unramified outside £(.%).
A Selmer structure .% on V defines Selmer structures on 7' and W taking re-

spectively the preimage and image of H }(Fw, V)via0 T -V W —0.
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Definition 5.2.2. Given a Selmer structure .% on M and a finite set of primes S we
define the Selmer structure .#° on M where X(.%#°) is given by £(.%) U, the local
condition at primes not in S is unchanged and the one at primes in S is the relaxed

condition, namely

H'(F,,T) ifwes
His(F,T) =

HL(F,T) ifwés,

Example 5.2.3. The Bloch-Kato Selmer group, for a p-adic representation V as
above satisfying some assumptions, is defined with the finite local conditions

H(F,,V), where

(

H! (F,,V) if w1 poo

H}(Fy,V) = { ker (H'(Fy, V) — H'(I,,,V ®q, Beris)) ifw|p

0 if w | oo,

\

If we have a Selmer structure .% on M, one can define a dual Selmer structure
Z* on the Pontryagin dual M* = Homou (M, Q,/Z,(1))! using local duality and

letting
HL.(F,,M*) := the annihilator of H% (F,, M) via local duality.

If we have .%,% two Selmer structures on M, we write % < ¥ if H}Q(FW,M ) C

Hé (Fv,M) for every w. Local duality gives a perfect bilinear pairing

(= =)w: Hy(Fy,M) /HL (Fy, M) x HY. (F,y,M*) /HY. (F,,,M*) — Q/Z.

Theorem 5.2.4 (Poitou-Tate global duality). Given . < & two Selmer structures

I'The notation (—)* for the Pontryagin dual of (—) should not be confused with the same one
used in the previous Chapters to denote the standard dual of a representation.



5.2. Selmer groups and Kolyvagin systems 176

onM, there are exact sequences

0 — HY(F,M) — Hy(F,M) 2% ED HY(F,,,M) /HY (F,, M)

w

0 = Hy.(F,M*) — HY.(F,M*) % @D HY.(F,,M*) /H}y. (F,, M")
w
and the images on the localisations maps are orthogonal complements with respect
to the pairing Y.,,(—,—)w, where (—,—),, are the local Tate pairings. This yields

the duality exact sequence

locV

0 —~HY (F,M) — HY(F,M) =5 P Hy (F,M)/HE (Fy,M) — H.(F,M*)" —

w

— Hy (F,M*)Y — 0, (LES)

where loc" is the dual of the localisation map in the second short exact sequence
above, identifying Hy,. (F,,,M*) with (H' (F,,,M) /HJ(F,,M))" via local Tate dual-
ity (and similarly for H}?* (Fy,M™")).

5.2.2 Kolyvagin systems

Let F be a number field and 7 be an R-module with a continuous Gpg-action.
Take w a finite prime. Recall the singular quotient H!(F,,,T) which is given by
H'(F,,T)/H}(Fy,T). We have the following result.

Proposition 5.2.5. Assume w does not divide p and T is unramified at w. Letting

ky, be the residue field of Fy, if |k,s|- T =0, then there are canonical isomorphisms
H}(F,,T)~T/(Frob,—1)T  H}(F,,T)®kj ~ T"=!
Proof. See [MRO4, Lemma 1.2.1]. L]

Definition 5.2.6. For w as in the previous Proposition, if Gf, acts trivially on T

we define the finite-singular comparison map to be the isomorphism given by the
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Canonical iSOInOI‘phiSHlS abOVe
. HNF,,T) ~T ~ H(F,,T) 9 k
W o f W Ky \2) w*

More precisely ¢ is given by the composition of

HYNFWT) 2 1 7 & (R, T) 0k

K — k(Frob,), k(0g) <+ KkQ«,

where oy €Gal(E,, F'") = I,,, the inertia subgroup of GF, , denotes the Artin sym-

bol of any lift of & to F,,.

Definition 5.2.7. Given a Selmer structure .# on T and a triple of positive integers
a,b,c, we define a Selmer structure .7 (c) on T where X(.%/(c)) is given by X(.%)

together with all primes dividing abc and

(

H\(F,,T) ifw]|a

| 0 ifv|b
H@g(c) (vaT) = . .
Hy(F,,T) ifw]|c

\H{éZ(FW7 T) ifwtabc,

where H\(F,,,T) denotes the transverse condition submodule (see [How04, §1.1]).

To simplify the notation, we denote by .% (n) the Selmer structure .| (n).

We now recall that, under the assumptions of Definition 5.2.6, the singular
quotient projects isomorphically to the transverse condition submodule. This gives
a splitting

H'(F,,T) = H}(Fy,T) & Hy(F,,T).

Moreover H }(Fw, T)and H }(FW, T*) (respectively HL(F,,,T) and H}(F,,T*)) are
exact orthogonal complements under the local duality pairing. See [MR04, Lemma
1.2.4, Proposition 1.3.2].

From now on, we go back to F = K, a quadratic imaginary field as in the
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previous sections.
As in [How04, § 1.2, Definition 1.2.1], we denote by .4y = %y(T') the set of
inert primes of K which do not divide p or any prime at which T is ramified. For

any ¢ € % we let:

- I, be the smallest ideal of R containing ¢ + 1 for which the Frobenius at the

prime A | £ in K acts trivially on T /I;T;

- Gy be the quotient k; /F ), where k; is the residue field of 4

14
- 4 be the set of squarefree products of primes in % and for n € .4, let

I, :Zlg CR, G,= ®G5.

ln Ln

By convention, let /; =0 and G| = Z.

Definition 5.2.8. By a Selmer triple (7,.%,.%) we mean a choice of Selmer struc-
ture .# on T and a subset .Z C % disjoint from £(.% ). We let A" = A (Z) be the
set of squarefree products of primes in ., with the convention of 1 € .4". A Koly-
vagin system for (7,.%,.%Z) is a collection of classes k, € H};(n) (K, T/I,T)® G,
such that

9% (locy(K,)) = locy(Kne). (K)

Remark 5.2.9. As explained in [How04, § 1.6], a Kolyvagin system for (7,.%,.%)
gives a Kolyvagin system for (T /@™NT,.7, W), where

W) .={te 2 1, c p"R}.

5.3 Structure theorem and error terms

5.3.1 Howard’s results on the structure of Selmer groups

Consider an elliptic curve E/Q as in the introduction, K a quadratic imaginary field

satisfying (Heegner hypothesis). Let

T = T,(E) where T°% = 0.
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Consider the Selmer structure . on V = T,,(E) ® Q,, given by the unramified lo-
cal condition at places of K not dividing p and at v|p take the image of the local
Kummer map

E(K,)®Qy —H'(K,V)

Define the local conditions on 7),(E) and E [p*] =V /T,(E) by propagating .%.

We now specify the set of primes . we will consider. For n > 1, we let
K (T /p") the field extension of K such that G (r/pvy acts trivially on T/ pNT. We

let

Zy:={¢ : T isunramified at /£ and the conjugacy class of Frob,

in Gal(K (T /p")/Q) is equal to the class of the complex conjugation 7}.

Cebotarev density theorem implies that this set has positive density. Notice that if
¢ is in ZLy, it is inert in K. Moreover since the Frobenius at the prime A | £ of K is
the square of Froby, the congruence of characteristic polynomials means that it acts
trivially on 7/pNT. We hence have that for every £ € %y, the ideal I, is contained

in pNZ,. In other words, letting . := Un>1-ZNs
o C2W. (5.3.1)

Notice that the Selmer triple (T,.%,.Z) satisfies all the hypotheses in [How04,
§1.3], but H.1 and H.2. We instead only have that 7% = 0, but allow T to be a
reducible Gg-representation, where T = T/ pT. Because of these properties, every-
thing Howard proves in sections 1.3-1.4-1.5 holds true also in our setting. We recall

what we will need for the proof of the bound on the Selmer group.

Lemma 5.3.1. We have isomorphisms for every 0 <i < N

Hy(K,T/pNT)[p'| ~H%(K,T/pNT[p']) ~ H%(K,T/p'T).

Hy(K,T/p"T)[p] ~ Hz (K, T).
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Proof. This follows as in [MR04, Lemma 3.5.4], where only the assumption TOk =

0 is needed. ]

Proposition 5.3.2. For every N > 0 and n € WV, there exists a finite Z,/ pN-module
My (n) such that

H (o (K, T/pNT) = (Z,,/ p")F © My (n) © My (n),

where € € {0, 1} is independent on both N and n.

Proof. By [How04, Theorem 1.4.2, Lemma 1.5.1], for every n € .4 there exist a
Zp-module My (n) and €(n,N) € {0,1} such that

Hp oy (K, T/pVT) 2 (Z,y/ p" )N @ My (n) & M (n).

In order to show that €(n,N) does not depend on n and N, one proves that the parity
of dimg, (H l@.(n) (K,T/pNT)[p]) is constant and independent on 7 and N. We now

need the following result.

Lemma 5.33. (/[How04, Lemma 1.5.3]). Let p(n)* := dimg,(H, (K,T)").
Then:

(i) ijlow(alg,(n)(K,T)i) 20, then p(nl)* =p(n)* —1.

(ii) Iflocy(H L, (K,T)*) =0, then p(nl)* = p(n)* + 1.
Proof. We briefly sketch Howard’s proof. Consider a prime ¢ € .Z coprime to n
and the exact sequences

0~ Hi(, (K,T) = Hyz(, (K.T) = Hj(K;, T)

Y4

0— Hb ., (K.T) = HY (K. T) = H (K, T).

(n)
The image of the last arrows are exact orthogonal under local Tate pairing by

global duality and the complex conjugation splits Hf1 (K;,T) and H!(K;,T) into
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one-dimensional eigenspaces for the action of the complex conjugation. Consider

also the exact sequences

l

where again by global duality the images of the last arrows are exact orthogonal.
We find that if the image of H}f

1 v+ _ gl
then Hz ) (K,T)*=H,

)(K ,T)* under the localisation map is not zero,

K, T)" =Hy, (K,T)",

(n

K,T)*. So we have H}OZ

(n)f< (n)z(

which proves (i).

For the second statement, Howard shows that the localisation of ngz (K, T)i

(n)

at ¢ is a maximal isotropic subspace of H' (Kg,T)i and that the only two such

subspaces are H}- (K¢, T)* and H\ (K, T)*. This tells us that Hi@.(n)g (K, T)* is

equal either to H [ (K, T)*orto H i@(n (K, T)*. The above argument implies that
K, T)" =Hy (K

H}(n)é( ,T)* contradicts the assumption loc,(H JQ(”) (K, T)*) =
0. So we have H;Z(n)é(K,T)lL = ng,(ng) (K,T)*, which implies the result using
global duality as above. []

Since by Lemma 5.3.1, H3,\(K,T/p"T)[p] ~ H, (K, T), the lemma im-
plies that the parity of dimg, (HL ( (K,T/p"T)[p]) does not depend on . O

n)

5.3.2 Cebotarev density theorem argument

In order to use the Kolyvagin classes to bound the Selmer group, we exploit the
action of the complex conjugation on the Selmer group. Since we have a natural
action of complex conjugation 7 on 7,,(E), we have an action of it on H'(K,T’) and
we write

for the subspaces where the complex conjugation acts as +1 and —1 respectively.

Similarly, for any finite Z,-module M with an action of 7, we will write M = M T
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M~ . From now on, for any ¢ € M we will also write
ord(¢c) =min{m >0: p"-c =0}.

The following result is due to Nekovar (see [Nek07, § 7.5.1]).

Proposition 5.3.4. For any pair of classes c* € H (K, T /p"NT)¥ laying in different
eigenspaces with respect to the action of complex conjugation, there exist infinitely

many primes ¢ € £y, such that we have
ord(locy(cF)) > ord(c*) —e,

where e is a constant which depends only on the image of Z.,[Gk| in GL,(Z,) and
is independent of N. Moreover if T is residually irreducible, e = 0 and we therefore

have an equality ord(locy(c™)) = ord(c™).

Proof. The error term e is the sum of the constants C; and C3 defined in [NekO7,
§ 6]. We briefly recall how these are defined and how to use Cebotarev density
theorem to find the primes satisfying the condition in the statement.

It is well known that Z; NIm(Gg — GL2(Z),)) is open in Z,,. This implies
that there is u € Z — {1} such that for every N, u mod p" lies in the center of Uy,
where

Uy = Gal(K(E[p"])/K) C Autg, (T /p").

We let C; := vp(u —1). We have, as in the proof of [Nek07, Proposition 6.1.2], that
< -ker (HI(K,T/pN) — Hl(K(E[pN]),T/pN)UN) =0 forevery N. (5.3.2)

Notice that, if we have Im (Gx — GL,(Z,)) = GL2(Z),), then we can take u # 1
mod p, giving C; = 0.
If V is an absolutely irreducible representation of Gk, Nekovéi defines in

[NekO7, Proposition 6.2.2], the constant C3 to be such that

Im (Z,[Gk] — Endy, (T)) 2 p©Endy, (T). (5.3.3)
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Again, if we have surjectivity, then C3 = 0.

What Nekovar shows at the beginning of [Nek07, (7.5.1)], using [NekO7,
Corollary 6.3.4] and Cebotarev density theorem, is that, given c¢t,c™ €
H'(K,T/pNT), there exist infinitely many primes £, where £ is a Kolyvagin prime,
such that

ord(locy(cF)) > ord(c¢*) — Cy — Cs.

We briefly recall how the proof goes. Let d* := ord(c*) —C, —C3. Ifd* =d~ =0,
then there is nothing to prove. So assume at least one of them is not zero. Let

L=K(E[p"]). By (5.3.2), the kernel of the restriction map
HY (K, T/p"T) =5 H' (L, T /p"T) = Homg, (GL,T /p"T).

is annihilated by p©2. Denote by f* the image under this map of ¢*. We hence
have

ord(f*) > ord(c*) — Cs.

Moreover by (5.3.3) the Z,-span of the image of f* contains p©End(T) - f£(Gy).
Since ord(f*) > ord(c*) — C,, we have that the Z,-span of the image of f* con-
tains pV—ord(c)+CH Gy /pNT. In particular, if g* is the projection of f* to the
summand (7 /pNT)* = Z,/p", then the Z,-span of the image of g* contains a
submodule isomorphic to Z,/ pdi. Since at least one among d* and d ™ is not zero,
then we cannot have that both f and f~ are trivial.

Let H C Gy, be the intersection of the kernels of £ and of f~, and let Z =
G /H. Note that H # G since some f= is non-trivial, so Z is a non-trivial torsion
Zp-module. Note also that Z is stable under the action of complex conjugation since
each f* is. In particular, Z=Zt®Z".

We have g*(Z~) = 0, since f= € Hom(G,T/p"T)*. So we find g*(Z) =
¢5(Z") and the Z,-span of g*(Z") contains a submodule isomorphic to Z,/ .
It follows that Z" is non-trivial.

If d* > 0, let Wy C Z* be the proper subgroup such that g (W.) =
pN_(di_l) (T/pNT)*. If d* =0, let Wy = 0. Then both W, and W_ are proper sub-
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groups of Z* (since there exists some z € Z* such that g*(z) € pN=4" (T /pNT)®).
It follows that W, UW_ # Z*t. Letz € ZT, z ¢ W, UW_. By definition, we have

ord(g*(z)) > d*. (5.3.4)

Let M = @H so that Gal(M/L) = Z. Let g = 1z € G, and let £ { Np be any
prime such that both ¢ and ¢~ are unramified at ¢ and Frob, = g in Gal(M/Q).
Cebotarev density theorem implies there are infinitely many such primes. Since Z
fixes E[p"] and K, Froby acts as T on both E[p"] and K. This means that ay(E) =
/+1=0 mod p" and ¢ is inert in K. That is, £ € Zy.

Since ¢ is inert in K, the Frobenius element at £ in Gal(Q/K) is Frob?. Consider

* is unramified at ¢, locy(cT) is completely

the restriction of ¢* to Ky. Since ¢
determined by the image ¢* (Frob?) in E[p"]/(Frob7 —1)E[p"]. By the choice of
¢, Frob? acts trivially on E[p"], so E[p"]/(Frob7 —1)E[p"] = E[p"]. Moreover,
Frob; = g% = 22 € Gal(M/L), so c¢*(Frob}) = f*(z?) = 2g*(z) € E[p"]*, where
the second equality follows as above from the fact that the projection of f* to

E[p"]T maps z € Z" to zero. Since p is odd, (5.3.4) yields
ord(locy(cF)) > d*.
Letting e = C; 4+ C3, we have proved the desired result. [

5.4 Bounding the Selmer group

In this section we prove Theorem 5.1.1. We assume from now on that there exists a

Kolyvagin system (x;,), for our triple (7,.%,.%) and that k; # 0. Denoting by K'I(N)

the image of kj in H 17- (K,T/pNT), we have that for N big enough KI(N) is different
from zero. For a finitely generated Z,-module M and x € M, we define the index of
x in M by

Ind(x,M) :=max{m >0:x € p"M}.

Notice that

HY(K.T) = imHY (K,T/p"T)
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and the index of ky in H (K, T) is equal to the index of KI(N) in H(K,T/p"T) for

N big enough. Since K is not zero, the Z,-rank of H }(K ,T) is at least one.

Recall that from Remark 5.2.9 and (5.3.1) we get a Kolyvagin system for
(T/pNT,.#,%y), which by abuse of notation we will still write as (k;),. The
class K, is an element of H}\(n) (K,T/I,T), but thanks to (5.3.1), we can view it as
a class in Héz(n) (K,T/p"NT) for every n squarefree product of primes in .Zy. We

now write any class ¢ in H{lg(n) (K,T/p"T) as
c=(ct,c)

where we denoted by (—)* the component of the image of the class lying in the
+-eigenspace with respect to complex conjugation.

Moreover, for every prime ¢ € %y, we fix a generator of ay € Gy, so that
we have isomorphisms H}g](n) (K, T/p"T)® G, ~ H}gj(n) (K,T/pNT) for every n
square-free product of primes in -%y. Under this identification, we can view k;, as

an element of H é?(n) (K,T/pNT). We rewrite the map ¢* as follows

€VFroby Sw
Of : H}H (K, T /pNT) — T /pNT & H} (K, T/p"T) @ ks ~ H} (K, T/p"T)

k — k(Frob,,), &'(oy) ++ K ® oy <= K,

where we denoted by oy the Artin symbol oj,. Then the Kolyvagin relation (K) can
be rewritten as

locy(Ky ) (Froby,) = locy (k) (07).

Finally we show that (Z)gfs switches the eigenspaces of the complex conjugation,

ie. if k€ H}(Kw, T/pNT)*, then ¢ (k) € H! (K., T /p"T)TF, so that we have
¢/ (loc (k7)) = locy(k3,) for £ n. (sign)

More precisely the above relation follows from the following

Lemma 5.4.1. Denote by T the automorphism defined by the action of complex
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conjugation on cocycles. For primes { € £y, using the above identifications, we

have

q)f'o 7(K) =—7o0 <p£s(1<),

for every k € H'(K,,,T /pNT), where K, is the completion of K at v | /.

Proof. Recall that ¢)§S is defined as evgfl O eVErob,- We will show that evgop, 07 =
eVErob, and evg! = —Toevy].

First, we show that x(tFrob,7) = x(Frob,). From the fact that ¢ € Zy,
we have that 7 and Frob, are in the same conjugacy class in Gal(K,/Qy), hence
they are equal and we can write T = Frobyh for some h € Gg,. We also have
Frob;1 Frob, Frob, = Frob,. We hence find that for every x € H } (K,,T/p"T),
k(7= ! Frob, t) = k(h~!Frob,h) = x(Frob,), where in the last equality we used
the fact that the cocycle k is actually a homomorphism since Gk, acts trivially on
T/pNT.

The second relation will follow from the fact that, since £ = —1 mod pN , the
action of conjugation of Frob, on the inertia subgroup Gal(K,/K"") is given by
—1. Hence, if k € H}(K,,T/p"T) we find k(t0,7) = k(h~! Frob, ! o,Frob,h) =

k(h~'(oy)~'h) = —x(oy), proving the second relation. O

Proposition 5.4.2. Let s| be the index of k1 in H}ﬂf (K,T) and N > 0. Consider
two classes ¢* € H é;([( ,T/pNT)*. Assume that the order of | is the order of
(k" k) € HL(K,T/pNT)*. Then p*1+%¢-c= =0and p ™ - € (k"), where e

is the constant of Proposition 5.3.4.
Proof. First of all we notice that, since k; is divisible by s; and N > 0, we have
ord(k;", H (K, T /p"T)) =N — 5. (5.4.1)

Let us first consider ¢~. We can then apply Proposition 5.3.4 to find a prime ¢
such that the inequalities on the orders of the localisations at ¢ hold for K1+ and ¢

Applying (LES) for the pair .%; < . and noticing that (T /pNT)* is identified with
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T /pNT via the Weil pairing, we have an exact sequence
HY (K, T/pVT)™ — HNK T/pVT)™ = (HY. (K. T/p"T) ")

and hence the image of the first map is isomorphic to the cokernel of
HL(K,T/p"T)” — H/}(K;, T/p"T)". Notice that k, € H,(K,T/p"T)~ and
the order of loc/(k;) is equal to the order of locy(k]") because of (K), (sign)
and the fact that the finite singular homomorphism is an isomorphism. Hence
ord(locy(k, )) = ord(x;) — e+t =: x for some t > 0. So we have that the
image of Hé\é(K,T/pNT)_ — H} (K, T/pNT)~ contains pN=Z,/p". Since
H} (K, T/pNT)™ ~ Z,/p", the cokernel of the map is isomorphic to Z,/p" ™
for y > x. In particular, since N — (ord( K'1+ )—e) >N—x>N—y, we find that
pNrd(K)=¢) . Joc,(¢™) = 0. Moreover, using (5.4.1), we get p*1 ¢ - locy(c™) = 0.

sit2e. 0= =0,

This implies, from our choice of ¢, that p
We now consider &;", ¢ € HL(K,T/pNT)". Let us write k := p~*1x;". The

order of k in HL (K, T /p"T) is equal to N. We can take a prime £ such that
ord(locy(x)) > N —e.

We let z be such that the image of the localisation map from H ,éz(K ,T/pNT) 7T is
isomorphic to Z,/ p*- co. We can then write loc, (k) = p*- co and locy(p°c™) = p¥-co

for some x,y < z. We claim that y > x, so that
loc/(pfct — p’ k) =0. (5.4.2)

This holds since if y < x, then ord(locy(p®c™)) = z—y > z—x = ord(locy(k)) >
N — e, implying that pV ¢ -loc/(p¢c™) = p" -locy(c*) # 0 which is a contradiction.
Let ¢’ := p°c™ — p’ k. Condition (5.4.2) means that ¢’ € Hi;l (K, T/pNT)* C
H}}( (K. T/ pNT)*. We apply Proposition 5.3.4 to find another prime ¢ such that
the inequalities on the orders of the localisations at ¢ hold for x,” and . Proceeding

as above, we find that pV—(©rd(x)=¢) .joc, (¢') = 0. Since ord(k;) > ord(loc(ky)) =
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ord(locy(x7))

N — (ord(ky) —e) < N — (ord(locy(xy)) —e) < N — (ord(xy) — 2e).

—(ord(xq)—2e)

Hence we obtained, p" -locy(¢") = 0. We proceed again as above, find-

ing that p*1+3¢. ¢/ = 0, which in turn yields p*1 74 - ¢ € (k7). O

Corollary 5.4.3. For N > s1 +4e we have

< oo
Hy(K,T/p"T)~1Z,/p" & (@Zp/pm’) :
i=1

where N > s1 +4e > m; for every i. In particular, € =1 and for N big enough
P'My(1) =0 fort =51 +4e <N.

Proof. Let ¢ = 4e. The proposition tells us, in particular, that for N big
enough ps'+elﬂlg,(K, T/p"T) is cyclic and non-zero. Writing HY (K, T /pNT) ~
S0 Zy/p™M we have that mo —s; — e’ > 0 and m; < s+ € for every i > 1. From
the fact that the rank of H }(K ,T) is at least one, we know that we must have an
element of order N, we have my = N (having taken N > s1 +4e).
In order to deduce € = 1 and that the maximal order of an element in My (1) is
strictly less than N we use again the fact that p*1 ¢ H (K, T/p"T) is cyclic. If we

had € = 0 or an element of order N in My (1) then we would have a subgroup
Zp/p" -co®Ly/p" -c1 CHy(K,T/p"T).

This is not possible because we have just shown that there is only one cyclic sub-

group of H (K, T /p"T) of order N. O

Remark 5.4.4. Notice that the corollary in particular implies H laf (K,T)=Z,,since
the assumption 7°% = 0 implies that H éz (K,T) is torsion-free, by [MRO04, Proposi-

tion 2.1.5]. So we have proved the first statement of Theorem 5.1.1.

We proved that the order of every element in My (1) is at most s; + 4e, but this

is not enough, since we want the same kind of bound on the length of My (1), which
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can be greater than the maximal order of its elements.

Let us assume without loss of generality that the order of (k;",k;") is the or-
der of KI“L. If that is not the case, then the order of ( Kl+ K ) is the order of K|
and we can proceed analogously swapping the signs. Since for N > 0, k] # 0 in

HL(K,T/p"T), we can write

r+s
Hy (K, T/p"T)" ~7,/p"&X,, HF(K,T/p"T)” ~Y;, where X;®Y, =Z,/p",
i=1

where we renamed the cyclic summands as

Xi=Z,/p"" ®Ly/p?D---DZLy/p, WithN >e1 >er>--- > e,

Vi =2Z,/p" ©Z,/p? @ - DL, p", WithN>dy >dy > >ds. (5.4.3)

Remark 5.4.5. Notice that » 4 s is independent on N. Indeed, using the fact that
HL(K,T/p"T)[p] ~ HY(K,T) (which follows from 76¢ = 0 and Lemma 5.3.1),

we find that the number of direct summands of HY, (K, T /p"T) is equal to x where

HY(K,T) = (Z,/p).

We now fix N > 0 to be such that N > (r+s)s; + (r+s+4)e. Our goal is to

prove the following

S|+t > %(el +---+e,+d;+---+dy), for some ¢ > 0 depending only on 7),(E).
(claim)

Let us assume this for a moment. We can then prove Theorem 5.1.1.

Proof of Theorem 5.1.1. We have already proved in Corollary 5.4.3 that % (K,T)

is a free Z,-module of rank one. The claim implies
s1+1 > Llengthg (X, @ Y1) = lengthg (My(1)).

Write HL(K,W) = (Q,/Z,)" & Z, where Z is a torsion Z,-module. Consider
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the N fixed above. Since we have
(Zp/P)' S Z[p" ) =H5 (K, W)[pN| ~H5(K,T/p"T) =Z,/p" &My (1) &My (1),

where My (1) is of maximal order strictly less than N, one deduces that n = 1 and
Z[pN] =Z = My(1) ©My(1). Applying the inequality above, we hence have proved
that

HL(K,W)~Q,/Z,5MSM, where lengthy, (M) < +1.

O

We require two lemmas. Before getting into the statements and proofs of these
lemmas, let us briefly sketch what is their role in the proof of the (claim): it relies on
applying Lemma 5.4.6 and Lemma 5.4.7 inductively in order to get the desired in-
equality. For simplicity we will write HZ, for the groups HY, (K, T /p"T)*, where
F' is some Selmer structure. One considers a Selmer group H #(n) SUch that

Ky € H () = Lp/P" ©Xa, HG{) =VYa,
where € € {£1} is such that the order of k;, is equal to the order of x%. One chooses
then a prime ¢ { n using Proposition 5.3.4 and Lemma 5.4.6 tells us what is the
structure of H g ,,p). We will show that H s (n0) is given by something closely related
to X,, plus some error terms bounded in terms of e. One then studies the structure
of H:@‘En 0 We have H;f(n 0= Zp/ pN @Y, and we will characterise Y, in terms of
Y,. Depending on what happens when we localise at /, we can either bound the size
d of the maximal order component of Y, in terms of e or have Y,y being equal to Y,
with the components of the order d (and possibly one other component) removed,
plus again some bounded extra factors. One finally uses the Kolyvagin relations
(K) and the classes k, = k5 and K,y = an, to which we can apply Lemma 5.4.7, to

prove inequalities

Sp+2e > s, in the first case of step 2

Sp+2e — %(length of the removed part) > s, in the second one,
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where s,,5,, are the indexes of K, K,y respectively. One then repeats these steps
again, with sign swapped every time. We will of course start with n = 1, so that at
each step we will have one of the inequalities above for the size of all the compo-
nents in X; and Y].

Finally, let us remark that even though the strategy is completely analogous
to the one adopted for [CGLS20, Theorem 3.2.1], the proof in op. cit. cannot be
applied directly in this context, where the character « is the trivial one. Indeed,
even though the presence of a character in [CGLS20] forces us to introduce another
error term, once we go to an extension trivialising the character, we have that both
the + and — component of the Kolyvagin class have big order. So one does not
have an asymmetric situation like the one presented here. Compare for example
(the proofs of) Proposition 5.3.4 and [CGLS20, Proposition 3.3.6] and (the proofs
of) Proposition 5.4.2 and [CGLS20, Theorem 3.3.8].

Lemma 5.4.6. Let %' be a Selmer structure of the form % (n) for some n and such
that H;, ~ Zp/pN@Xl, H;; ~ Y|, where X1,Y| can be written as in (5.4.3) and
dy,e; < S for some S < N. Then there exist infinitely many {1 € £y, {1 1n, such

- — N
that Hzy = Zp/p" © Xy, HS

T = Ygl, with

)
Yo~ | @ Z,/p% | ©Z,/p% ©Ly/p% & (Zy/p" ©Zp/p™),
i#lk:l}kz

where ey, < eﬁq < e, +2e,0 <xy,x < 2e

and, if di < 2e, the exponent of Xy, is less or equal then P, ifdy > 2e, then

s Z,/plin & Z,/p*, 0<x<e
. 4 D ) = =
Xy ~ @ Zp/pdj@
j=2 Zp/p B ZL,/p2, 0<x1,x<e.
J#i(1)

Proof. Let us assume without loss of generality that € = 4. Take ¢ € H;C, to be
a generator of Z,/ pNand c; €Y = H, to be a generator of Z,/ p?, the first

component of Y¥;. We take ¢; as in Proposition 5.3.4. Since ord(loc, (cg)) > N —e,
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we find that the image of the map
H s — H} Ky, T/pY) " =2,/ p"

is isomorphic to Z,/ p¢ for some ¢ > N — e. We also have that locy, (pSco) # 0 since

its order is ord(loc, (cp)) =S > N —S§ —e > 0. In particular this tells us that
c>S.

Let u be a generator of the image. If there existed x € X; such that locy, (x) = u,
then we would have ord(x) > ¢ > § > ord(x), giving a contradiction. Hence we
proved that the image is generated by locy, (co). Moreover, using as before (LES),
the image of

HLyy = He(Ke T/pNT) =2, /pN

(1)

is Zp / pN _C/, with N — ¢/ < N — ¢ < e. Hence we find an exact sequence
+ + N—c
O—>H%1 = HZ )= Lp/P" " = 0.

We now use again Lemma 5.3.1 to count the number of summands of H}, (o) Rea-
soning as in the proof of Proposition 5.3.2, we apply Lemma 5.3.3. If the image
of the localisation of the p-torsion of HY, is zero, then HY, [p] ~ (Z,/p)"*' and
X 7,

H},(m[p] ~ (Z,/p) 2. Otherwise H;/ié1 p) ~(Z,/p)" ~ H;\,(Zl)[p].

If the image of the localisation of the p-torsion of H}, is not zero, we have
that H},( o) and H}Zl have r summands. We find either H}él ~ X; or H}él ~
(i1 it Lp/P*) & Z,/p®™N=¢. We therefore have

,
Higy = | @D Zo/p" | ©2p/p% ™ 02,/p" .0 < 5.4/ <2 (case 1)

=1
i#k k'

If the image of the localisation of the p-torsion of H{j;, is zero, the number of sum-

mands of H;;, is r+ 1. So we must have that it is isomorphic to Zp/pN_c D Xi.
ey



5.4. Bounding the Selmer group 193

Moreover the Selmer group H;;, @) has r + 2 summands. We assume without loss
of generality that ¢ = ¢/. Indeed we will be using only the fact that N — ¢’ < e. We

have the following cases

X\ & Lp/pV B Ly PV (case 2)

HY, X\ ®Zy/ P L,/ p™, mi+my=2N—2c (case 3)

(@)=

D Zy/ P DLy PN DL, PN DLy P, ni+ny=N—c+e; (cased),
ik

\

where we remark that in the last case Z,/p is mapped diagonally in Z,/p" &
Zp/p™. Using the inequality ¢ > N — e we deduce that in cases 2 and 3, we are
adding to X; two cyclic groups each of order at most 2e. In case 4, we replace
Zp/p by some Zj/ peL where ¢; < ¢} < e;+ e and the other two summands added

in case 4 have order at most 2e. All in all, we proved

H:;?/(gl) = @ Zp/l’ei @Zp/l?ekl EBZp/Pek2 D (Zp/le 69Zp/17xz)7
ok

ey, < e < ey +2e

where (+)

0<xp,x <2e

Let us now work with the — eigenspace. First of all we notice that, since by
Corollary 5.4.3 € = 1, we must have an element of order N in Hgz/(y). We claim
that this must be in H ;,,( 0 This holds because every element in H }, o) has order
strictly less than N. We already know that all the ¢;’s are strictly less than N by
assumption, and for our choice of N for the other summands we may add in (+) we
have

er+2e<S+2e<N, x;<2e<N.

We now consider the exact sequence

0—H_

32; _>H;2/ ~Y _>Hfl(KE17T/pNT)_ = Z’P/pN'
‘1
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Let us write Z, /p” for the image of the last map. If y = 0, i.e. the localisation at /;
is the zero map, we have in particular that 0 = ord(locy, (¢1)) > d; —e. Hence all

the d;’s are less or equal than e. Using duality again, we have the exact sequence
-~ - N
0 —>H32(;1 =~V = Hg ) = Zp/p
and since all d;’s are strictly less than N, we proved

di <eand H, ) Zp/pN@Ygl where Yy, =17. (—o)

(6

We now assume y # 0. We use again Lemma 5.3.3 to deduce the following: if
the image of the localisation of the p-torsion is zero, the number of summands of
H;\, o) is s + 1; if the image of the localisation of the p-torsion is not zero, then
there exists an element of order d; such that the localisation has again order d; and

the number of summands of H;, (0) 185 = 1.

In the first case the kernel of the localisation is isomorphic to @, Z,/ P4 @

Zp/ p%n = for some d i, = y. Using duality as above we find an exact sequence
0— Hﬁgl ~ @z Lp/ PV S Lp/ P — Hg;/(gl) — ZLp/p" ™ =0,

for y’ > y. We have hence two cases: Haio) =

sj:l Zp/l’dj BLy/ P DL,/ P, mi+my=N+dj —2y (case 1)
J#

@:ﬁl' Zp/ P ®Lp/ i o DL/ p" ©Lp/p™, ni+ny=N+dj,—y (case?).
JEip

In both cases we must have one of the two m;,n; is equal to N. Let us assume
my,n; = N. This implies my = dj, —2y’ in case 1 and np = dj, —' in case 2. Recall
that we choose /1 such that ord(loc, (y1)) > di —e. Since d; is the maximal among

the d;’s and y' >y > ord(locy, ) (y1), we find d; —y’ < e for every j and hence

my,ny < e.
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In the second case, i.e. if the image of the localisation of the p-torsion is not
zero, we find
-~ di 4o td—y
Hg% ~ ®jzj iy lp/ P B Ly pT TR

Working as above, we therefore have

O 1 Tyl pi @ T,y Y (case 3)
H- ~ JFi1.J2
D o1 Zp/pY®Ly/ TR BLy /PN (case 4).
JF 152,03
dj, +dj,

Since we must have a summand of length N, we must have —15—2 = y' in case 3

and dj, =y’ in case 4.

‘We can summarise the four cases above as follows

(

Zlﬂ/Pd‘"2 @ZP/de3 ©ZLp/p*
S
— d .
Hay =Zp/P"® | D Zp/p" |91 2,/p% ©Z,/p" &L,/ p>,
=1

J#J15J2:J3 Zp/pdjl +dj—dj3 o Zp/ P ® L,/ P72, y = dj,,
(5.44)

with 0 < x,x1,x <e.

Notice that if d; < 2e (and hence d; < 2e for every j), we have one big cyclic
summand of order N and all the remaining summands have again order at most 2e.
On the other hand if d; > 2e, then the localisation of d; is different from zero and
we must have j; = 1. In particular in the last case (which comes from case 4 above),
we find y/ = dj, >y > d,. This implies that d| = d,. In other words, if d| > 2e, the

possible cases are

s Z,/ P ® L, p*, 0<x<e (= 1)
- N d; p pre s == ’
H oy 2 Lp/P" @ | €D Zp/p"
j=2

= Zp/pxl@Zp/p)Q, 0§X1,X2§€ (_72)7
J#i(1) -

for some index 2 < j(1) <s. Using again the fact that d; is maximal and y’ >y >
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d; — e, we also find

. di+d; .
Y >di—e>% —e incase (1), y > % —e incase (—,2). (5.4.5)
So in this case, we have Hc;"(&) ~ Zp/pN ®Yy,, where Y, is Y} to which we have re-
moved either only the cyclic factor Z,/ p? or the cyclic factors Zp/ ph ez o/ pdj<1>.
One may also have to add some other summands to this group, but the total number

of summands of order strictly greater than 2e has decreased by one or two. ]

Lemma 5.4.7. Let .7’ be a Selmer structure as in Lemma 5.4.6 and ¢ be a prime
produced by such lemma. Assume that there exists a class ¢ € H ;f( o) whose locali-
sation at {1 has the same order of the localisation of the class p*'co € H;,, where ¢
is the generator of the maximal order summand and s\ > 0 is such that N > s1 +S.

Denote by sy, the index of such class. We then have
s1+2e > A
Moreover, if dy > 2e, we also have, depending on the two cases of Lemma 5.4.6,

> Sy

di+d;q)
2 1°

s1+2e—d71 > sy, or s1+2e—

Furthermore, ¢ must have a non-trivial component (of maximal order) in 7,/ V.

Proof. Assume again without loss of generality that € = 4. We can write ¢ = p*1 - ¢/
for some class ¢’ € H;"(el)' Since the image of the localisation at ¢; is equal to

p HE(Ky,, T/pNT)~ for some y' > 0, we have that
locy, (¢) € p* ™ Hy(Ky, T/p"T) "
The hypothesis shows that
loce, (p*ico) € p* ™Y HI Ky, , T/pVT)T.

Since the choice of ¢; in Lemma 5.4.6 is such that ord(loc, (cg)) = N —e +1, the
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index of locy, (p*co) is s1 +e—1 and hence s; +e —t > sy, + ' and in particular
si+e> s+ (5.4.6)
Combining this inequality with (5.4.5) in the proof of Lemma 5.4.6, one finds
1+ 2e— % > 8, (ineq, 1)

di+d; .
s1+2e— % > sy (ineq, 2)

1

in case (—,1) and (—,2) respectively. Notice that in the case d| < 2e (which includes
the case y = 0), it will suffice for our purposes to have the following inequality

which is deduced from (5.4.6)
51+ 2e > sy, (ineq, 3)

We also need to show that the class ¢ has a non-trivial component in Z,/ pN. We
have

ord(c) > ord(locy, (¢)) = ord(locy, (p*'cp)) > N—s1—e > 0.

Since the order of every element in Xy ® Yy, is less or equal than S + 2e, from our
choice of N > 0, we must have that ¢ has a non-trivial component (of maximal

order) in Z,/p". O
We now have all the ingredients to prove the claim.

Proof of the (claim). Recall that N is fixed such that N > (r+s)s; + (r+s—+4)e.
In order to prove the (claim), we repeatedly apply Lemma 5.4.6 and Lemma 5.4.7,

starting with the Selmer structure .%. This gives us the following result.

Lemma 5.4.8. There exist subsets J C {1,...,s}, I C{1,...,r} such that

s1+(r+s)(2e) > 3 (Zdj—f—Zei)

jer icl

and for all j & J (resp. alli € 1) dj < (r+s)2e (resp. e; < (r+s)2e).
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Proof. We start by considering H; ~Z,/p" ®X;, H; ~Y;. If d; < (r+s)2e and
e1 < (r+s)2e, then we can take I = J = 0 and there is nothing to prove. Otherwise,
we prove that there exists primes /1, ..., ¢, such that, lettingn =/¢; ----- l,ysand

s, the index of x,, € H F(n)» WE have

s1+ (r+s)(2e) > 3 (Zdj+26i> + $p.
jeJ i€l
Notice that thanks to Corollary 5.4.3, we can apply Lemma 5.4.6 to .#’ = .%, with
§ = s1 +4e; moreover taking ¢ = Ky, , thanks to (K) and (sign), we can also apply
Lemma 5.4.7. We then apply these lemmas inductively to #' =.% (¢;---¢,_1), with
S =151+ (2+1—1)2e and ¢ = k;,, so that we can find a prime /; such that, writing
n; =4y---£;, we have

~ N - ~
H;(I’lz) - Zp/p @Xnt Hﬁg(l’lt) - Ynl’

where € = (—1)" and

Moreover:

(i) there is an injection f; : {1,...,r(t —1)} — {1,...,s(¢)}, such that egn”l) <

dj(;(’l)) < el(n”l) + 2e and the missing dj(.”’) are bounded by 2¢;

(ii) if dg"”l) > 2e, there is an injection g; : {1,...,s(t—1)} =S, — {1,...,r(t)},
(nr)

such that eg@) = ;n”l) and the missing e;"" are bounded by 2e. Here §; C

{1,...,s(t — 1)} is either a singleton {x;} or it contains two elements {x;,y;}

and we set dy(t"”l) = 0 in the former case; if dg"”‘) < 2e, then di"f) < 2e and

we set dg’”l) = dy(l"”l) =0;
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(ny—1) (ng—1)
d +d .
(iii) sp,_, +2e > sy, + “——="——, where s,,_, and s, are the indexes of &, ,

and k;, respectively;

(iv) sp, <y, +2e, the exponent of X, ©Y,, is bounded by s + (24 1)2e and &,

has a non trivial component of maximal order in Z,/p".

Combining the inequalities of (ii1), we find

(e—1) | (1) (np—1) | neq) | (e 2) | S(mp2)
dy, dy, de,'Vtdy, TV tdy T +d
Sn, <S"t1+2€_#<sn,,2+4e— ! i s

() +dy ).

MH

<s1+t(2e) -3

i=1

Applying (ii), we find that for t = r + s, the exponent of X,, ©Y,, is bounded by
(r+ s)2e. Moreover, from (i) and (i) we find that there exist some J C {1,...,s},

I C{1,...,r}, such that there is an injection from /U J to U._ S, and

4
Zd("’ ! "’ D> Y dj+) e, andforj&J,id1,d;j<t(2e),e;<t(2e).
i=1 jeJ il
Combining this with the above inequality, we get the desired result. ]

In order to conclude we consider the inequality of the previous lemma. Adding

1 (X jesdj+ Ligrei) to both sides, we find

si+ (L4 3(r+s—#I—#J))(r+s)(2e) > 51+ (r+5)(2¢) + % (Za’ﬁ—Ze,)
i¢] il

N
> % (Zldj—i—Zei
=

i=1

The left hand side is less or equal than s; + (14 r+s)(r+5)(2¢), we hence have

proved
s+ (L+r+s)(r+s)(2 %(Zd +Ze,>.

Since x := 1+ r—+sis independent on N by Remark 5.4.5 and so is e by Proposition
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5.3.4, we have

N r
s1 +4x%(2e) > % (Z dj—|—zei> )
=1 i=1

which concludes the proof of the (claim). L]

Remark 5.4.9. Let us consider the case where T = T),(E) is residually irreducible.

In this case e = 0. Since ¢ is a multiple of (2¢), we have proved that
lengthy, (M) < lengthy, (HZ(K,T)/Z,- K1),

giving an alternative proof to Howard’s result [How04, Theorem 1.6.1].
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